Sustainability
Hammond, WI - The new Western Wisconsin Conservation Council is a nonprofit organization led by local farmers and focused on protecting the region's watersheds and the way of life and commerce they support.

Tom Zwald, who milks 700 cows and runs about 2,000 acres as part of Bomaz Farms near Hammond, said this farmer-led watershed council is unique in that it will not be limited to one watershed but will include all area watersheds, including those for the St. Croix and Kinnickinnic rivers. | READ MORE
Published in News
It's likely not the first thing you think of when you see elephant dung, but this material turns out to be an excellent source of cellulose for paper manufacturing in countries where trees are scarce, scientists report. And in regions with plenty of farm animals such as cows, upcycling manure into paper products could be a cheap and environmentally sound method to get rid of this pervasive agricultural waste.

The researchers are presenting their results today at the 255th National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 13,000 presentations on a wide range of science topics.

The idea for the project germinated on Crete, where Alexander Bismarck, Ph.D., noticed goats munching on summer-dry grass in the small village where he was vacationing. "I realized what comes out in the end is partially digested plant matter, so there must be cellulose in there," he recalls.

"Animals eat low-grade biomass containing cellulose, chew it and expose it to enzymes and acid in their stomach, and then produce manure. Depending on the animal, up to 40 percent of that manure is cellulose, which is then easily accessible," Bismarck says. So, much less energy and fewer chemical treatments should be needed to turn this partially digested material into cellulose nanofibers, relative to starting with raw wood, he conjectured.

After working with goat manure, Bismarck, who is at the University of Vienna, Austria, his postdoc Andreas Mautner, Ph.D., and graduate students Nurul Ain Kamal and Kathrin Weiland moved on to dung from horses, cows and eventually elephants. The supply of raw material is substantial: Parks in Africa that are home to hundreds of elephants produce tons of dung every day, and enormous cattle farms in the U.S. and Europe yield mountains of manure, according to Mautner.

The researchers treat the manure with a sodium hydroxide solution. This partially removes lignin -- which can be used later as a fertilizer or fuel -- as well as other impurities, including proteins and dead cells. To fully remove lignin and to produce white pulp for making paper, the material has to be bleached with sodium hypochlorite. The purified cellulose requires little if any grinding to break it down into nanofibers in preparation for use in paper, in contrast to conventional methods.

"You need a lot of energy to grind wood down to make nanocellulose," Mautner says. But with manure as a starting material, "you can reduce the number of steps you need to perform, simply because the animal already chewed the plant and attacked it with acid and enzymes. You inexpensively produce a nanocellulose that has the same or even better properties than nanocellulose from wood, with lower energy and chemical consumption," he says.

The dung-derived nanopaper could be used in many applications, including as reinforcement for polymer composites or filters that can clean wastewater before it's discharged into the environment, Bismarck says. His team is working with an industrial consortium to further explore these possibilities. The nanopaper could also be used to write on, he says.

The researchers are also investigating whether the process can be made even more sustainable, by first producing biogas from manure and then extracting cellulose fibers from the residue. Biogas, which is mostly methane and carbon dioxide, can then be used as a fuel for generating electricity or heat.
Published in News
Reading, Pennsylvania - All communities depend on clean water and that supply of clean water depends on the actions of members in the community and outside of it.

The small city of Kutztown lies within the Saucony Creek watershed in Berks County, Pennsylvania. The watershed is mostly agricultural, dotted with small family crop and livestock farms, and the activities on these farms affect water supplies near and far.

Saucony Creek itself feeds into Lake Ontelaunee, the water supply for Reading, Pennsylvania. Kutztown gets its water from wells that, because of the soils and geology of the area, are strongly affected by activities on the surrounding landscape.

In the early 2000s, the nitrates in Kutztown's water supply were approaching the maximum safe levels for drinking water. The nitrates were related in large part to farms in the area.

This situation energized a partnership of non-profit organizations, government agencies, and private entities to ensure the safety of the city's water supply, in part by helping local farmers install conservation practices that protect and improve water quality. As part of this effort, USDA's Natural Resources Conservation Service (NRCS) delivered additional funding for voluntary conservation assistance through its National Water Quality Initiative (NWQI). 

NRCS Collaborates with Conservation-Minded Farmers
For years, dairy farmer Daniel Weaver faced challenges that made his life harder and affected water quality in his area. He hauled manure every day because he had nowhere to store it. And, his cows watered and roamed in a branch to Saucony Creek that runs through his property. This reduced the health of the stream and of his herd. That is before he formed a relationship with NRCS staff at his local USDA Service Center.

With NRCS's help, Weaver was able to implement conservation practices that improve the operations of his farm in a way that also protects the ground and surface water flowing through his property. First, NRCS helped him develop a nutrient management plan for his property. The Environmental Quality Incentives Program funding, commonly known as EQIP, enabled him to install a manure storage tank that alleviates the need to haul manure daily. The new storage capacity allows him to control the rate and timing of manure application on his farm, which are key factors in achieving healthy soil and clean water. He also says that it has helped him save on labor and fertilizer.

"I think it should be mandatory for farmers to have a manure pit," he said.

Streambank fencing and an animal crossing were installed to keep cows from contaminating streams and creeks that crossed their pastures and therefore the downstream rivers and lakes. In the five years since installation, vegetation has grown on the stream banks, creating a buffer for the stream and the crossing controls the cows' access, thereby limiting pathogens and nutrients from entering the water.

Not too far away, Harlan Burkholder owns and operates a 100-acre row crop and beef cattle farm. He also worked with NRCS and other partners to improve water quality in Saucony Creek. When Burkholder bought his farm in 2005, manure was being stored on the ground near the creek that runs through the property because there was limited space near the barn. He had to spread manure on the fields often to keep it from piling up.

Realizing that it's best to spread manure in the growing season and store it in the winter to avoid runoff, he developed a nutrient management plan. After applying for NRCS financial assistance, he worked with NRCS to co-invest in a manure storage structure. Now, Burkholder is able to store manure over the winter so he can spread it at optimal times.

He is grateful for NRCS's help. "As a beginner, there's no way I could have spent money on something like this," he said.

Burkholder also knows the importance of keeping soil healthy with no-till and cover crops. As a 100-pecent no-till farmer, Burkholder says, "I have no intentions of doing anything else. It's working."

It's working so well that he's sharing his knowledge and experiences with other farmers.

Results
Together, NRCS and its partners have helped more than 20 farmers in the watershed get conservation on the ground. In fact, NRCS has invested more than $2 million in targeted assistance in this area alone.

"The voluntary efforts of these farmers that protect the water in Saucony Creek also has a positive impact on the groundwater in aquifers beneath it," said Martin Lowenfish, the team lead for NRCS's landscape conservation initiatives. "Kutztown is home to 14,000 residents who rely on drinking water from those aquifers."

And, the residents of Kutztown are taking notice. Just two years after the city's water treatment plant was updated with equipment to remove nitrates from the raw water, the plant is running at minimum capacity because the nitrate levels have been reduced by almost half thanks to the conservation efforts of farmers and ranchers upstream. Now, the treatment plant's water is within legal safe drinking water requirements and treatment costs also have been significantly reduced.

This is just one impact among many that show how a little conservation can yield big results for communities downstream.


Published in Profiles
A ditch containing woodchips may look unassuming—but with a name like bioreactor it's guaranteed to be up to more than you think.

Bioreactors, which are woodchip-filled ditches and trenches, are often used near crop fields to filter the water running off of them. The woodchips enhance a natural process called denitrification that prevents too much nitrogen from getting into other bodies of water like rivers and streams.

"This process is a natural part of the nitrogen cycle that is done by bacteria in soil all around the world," explains Laura Christianson. Christianson is an assistant professor at the University of Illinois. "In a bioreactor, we give these natural bacteria extra food—the carbon in the woodchips—to do their job. These bacteria clean the nitrate from the water."

Because it is the bacteria that do this water-cleaning process, it's called a biological process, hence the name bioreactor. By giving them extra food (the woodchips have much more carbon than the surrounding soil), they are "super-powering" this natural process.

"Nitrate in ag drainage is often 100 percent pinned on fertilizer, but it's actually much more complicated," Christianson adds. "In short, nitrate in drainage comes from both fertilizer and manure applications and also importantly from natural nitrogen that exists in the soil."

Christianson studies how well different types of bioreactors take nitrogen out of the water. Her team's work has shown they are effective in the Midwest. Next, they wanted to test them in the Mid-Atlantic region, particularly the Chesapeake Bay watershed.

"Bioreactors are a farmer-friendly practice that has gotten a lot of interest in the Midwest, and so it made sense to see if bioreactors could also work for ag ditch drainage in the Mid-Atlantic," she says. "Why did we need to retest them? The key scientific question had to do with the different environment. Differences in the landscape between the Midwest and Mid-Atlantic regions required further testing."

The researchers tested three different kinds of bioreactors in the Chesapeake Bay area. They all treated water that was either headed to a drainage ditch or already flowing through a drainage ditch.

One was a bioreactor placed in a ditch. Another was a bioreactor next to a ditch. The last type was a sawdust wall that treated groundwater flowing very slowly under the ground to the ditch.

The group's findings showed that all three types worked in reducing the amount of nitrogen headed from the field into nearby water.

This is good news for watersheds. Too much nitrogen throws off the balance of nitrogen in bodies of water and can set off a process that results in the death of the water's plants and fish. For this current research, the goal was to limit the nitrogen getting from the Mid-Atlantic into the Chesapeake Bay.

The next step in this research, Christianson says, is to further test bioreactors in this area and others so they are better constructed and more effective.

"This is a relatively easy idea that cleans up water without taking much of farmers' time or land," she says. "We need practical solutions like this so farmers can continue to produce food and fiber, while also protecting natural resources. I like that it's a natural process; we're just enhancing it. There's a nice simplicity to it."

Learn more about this work in Agricultural & Environmental Letters. Christianson's research is also highlighted at https://www.agronomy.org/about-agronomy/at-work/laura-christianson. The research was funded by the USDA Natural Resources Conservation Service Conservation Innovation Grant.
Published in News
Beef and dairy farmers around the world are looking for ways to reduce methane emissions from their herds to reduce greenhouse gas emissions – a global priority. To help meet this goal, researchers from Canada and Australia teamed-up for a comprehensive three-year study to find the best feeding practices that reduce methane emissions while still supporting profitable dairy and beef cattle production.

"We need to know how feed affects methane production, but we also need to know how it affects other aspects of the farm operation, like daily gains in animals, milk production, and feed efficiency. Farmers want to help the environment, and they need to know what the trade-offs will be, which is why we took a holistic approach looking at the overall impacts," explains Dr. Karen Beauchemin, beef researcher from Agriculture and Agri-Food Canada (AAFC).

Researchers and farm system modellers from Agriculture and Agri-Food Canada, Agriculture Victoria (Australia), and the University of Melbourne, worked together to examine three feed supplements.

Methane inhibitor supplement 3-nitrooxypropanol (3NOP) could reduce costs and increase profits

3NOP is a promising commercial feed supplement that can be given to cattle to inhibit the enzyme methyl coenzyme M reductase – an enzyme responsible for creating methane in the animal's rumen (first stomach). After blocking the enzyme, 3NOP quickly breaks down in the animal's rumen to simple compounds that are already present in nature.

AAFC's Dr. Beauchemin studied the short- and long-term impacts of feeding 3NOP to beef cattle and shared her findings within the broader study.

"We now have clear evidence that 3NOP can have a long-term positive effect on reducing methane emissions and improving animal performance. We saw a 30-50% reduction in methane over a long period of time and a 3-5% improvement in feed efficiency," Beauchemin says.

Producing milk, gaining weight, and creating methane all take energy that a cow fuels by eating. Cattle eating a diet that contained the 3NOP supplement produced less methane. And, because there was less methane more energy could be used by the animal for growth. When using this supplement, cattle consumed less feed to gain a pound of body weight compared to control animals.

"What is also great is that the inhibitor worked just as effectively no matter what type of feed the cattle were eating," Beauchemin explains. "We don't know the actual market price of the supplement yet because it is still going through approvals for registration in Canada and the U.S. That will be important for farmers who want to calculate the cost-benefit of using 3NOP to reduce methane emissions from their cows and enhance profits."

The Story of Nitrate
Microorganisms in the cattle's rumen need nitrogen to be able to efficiently break down food for the animal to absorb. Nitrate is a form of non-protein nitrogen similar to that found in urea, a compound used in cattle diets. When nitrate is fed to cattle, it is converted to ammonia which is then used by the micro-organisms. During this process, nitrogen in the nitrate works like a powerful magnet that is able to hold onto and attract hydrogen. This leaves less hydrogen available in the rumen to attach to carbon to make methane, thus reducing the amount of methane produced.

Researchers in Canada found that adding nitrate to the diet of beef cattle reduces methane production by 20 percent in the short-term (up to three weeks), and after 16 weeks it still reduced methane up to 12 percent. In addition, feeding nitrate improved the gain-to-feed ratio. However, administering the correct dosage is extremely important, as too much nitrate can make an animal ill. So it is recommended this method should be used with care and caution.

Dr. Richard Eckard, a researcher from the University of Melbourne explained "I understand that in Canada, most forages are not that low in protein. But in the rangelands of northern Australia, the protein content in the forage is extremely low. It is possible that adding nitrate to Australian cattle feed may be able to improve the feeding regime from the current use of urea, but it depends on the price."

To supplement or not supplement with wheat, corn, or barley?

In the short term, wheat effectively reduced methane production by 35 percent compared with corn or barley grain; but, over time cattle were able to adapt to the change in feed and the methane inhibitory effect disappeared. Essentially, after 10 weeks, methane production was the same for corn, barley, and wheat.

The study also showed genetic variation in cows where about 50 percent of the cows that were fed wheat remained low in their methane emissions, even for as long as 16 weeks. However, the other cows adapted to the wheat diet and had methane emissions similar to, or even greater than those fed diets containing either corn or barley. Based on genetics, some cows are more adaptable than others and, in the long-term, it is more difficult to reduce the amount of methane they produce.

For dairy cows, Dr. Peter Moate, Dairy Researcher with Agriculture Victoria, was particularly intrigued about the link between milk fat, yield and methane emissions.

"We found that feeding cows wheat increased milk yield but fat levels decreased. For the farmer, it really depends on what they want to achieve in order to say whether this makes sense economically," explained Moate. "Overall, feeding wheat didn't have the long-term ability to reduce methane emissions, so it really couldn't be recommended as a best practice to achieve this type of goal."

Lessons learned
"Our better understanding of feeding regimes will make a difference for farmers, but more importantly this research has really helped us understand more precisely the volume of greenhouse gases (GHGs) the industry is producing under different feed regimes. This is powerful information for policy makers," stated Beauchemin.

This is particularly true for countries that have implemented or are thinking about putting a price on carbon or a carbon trading scheme in place to reduce GHG emissions.

"By adopting different farming methods to reduce GHGs, farmers may be able to sell these "carbon credits" for revenue. But the key is to prove that these farming methods work and warrant being officially recognized for carbon credits. This work is one step closer in this process" explains Beauchemin.

While this project has wrapped-up, the work has not ended. Researchers in both countries unanimously agree that they will continue to help farmers and the industry find solutions to reducing their carbon footprint.
Published in Beef
There's a farm in Arkansas growing soybeans, corn, and rice that is aiming to be the most scientifically advanced farm in the world. Soil samples are run through powerful machines to have their microbes genetically sequenced, drones are flying overhead taking hyperspectral images of the crops, and soon supercomputers will be crunching the massive volumes of data collected.

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), working with the University of Arkansas and Glennoe Farms, hope this project, which brings together molecular biology, biogeochemistry, environmental sensing technologies, and machine learning, will revolutionize agriculture and create sustainable farming practices that benefit both the environment and farms.

If successful, they envision being able to reduce the need for chemical fertilizers and enhance soil carbon uptake, thus improving the long-term viability of the land, while at the same time increasing crop yields. For the full story, CLICK HERE.
Published in News
Arlington, Virginia - Frank Mitloehner, PhD, will debunk myths about animal agriculture's environmental impact at the Animal Agriculture Alliance's 2018 Stakeholders Summit, set for May 3-4, at the Renaissance Capital View Hotel in Arlington, Va.

Mitloehner is a professor and extension air quality specialist in the Department of Animal Science at the University of California, Davis. He is an expert on agricultural air quality, livestock housing and husbandry. Overall, he conducts research that is directly relevant to understanding and mitigating of air emissions from livestock operations, as well as the implications of these emissions for the health and safety of farm workers and neighboring communities.

"There is a lot of misinformation about how much animal agriculture actually contributes to the nation's greenhouse gas emissions and overall environmental impact," said Kay Johnson Smith, Alliance president and CEO. "With the industry's commitment to continuous improvement, Summit attendees will find Mitloehner's research enlightening and refreshing."

The Alliance also announced that the Summit has been approved for eight continuing education credits by the American Registry of Professional Animal Scientists. ARPAS members in attendance can request credit using www.arpas.org or by contacting Cornicha Henderson at This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

To register, visit http://animalagalliance.org/summit. Be sure to check the Summit website for the most up-to-date Summit information. You can also follow the hashtags #AAA18 and #ProtectYourRoots for periodic updates about the event. For general questions about the Summit please contact This e-mail address is being protected from spambots. You need JavaScript enabled to view it  or call (703) 562-5160.
Published in News
While April showers might bring May flowers, they also contribute to toxic algae blooms, dead zones and declining water quality in U.S. lakes, reservoirs and coastal waters, a new study shows.
Published in Other
Farm manure could be a viable source of renewable energy to help reduce greenhouse gas emissions that cause global warming.

Researchers at the University of Waterloo are developing technology to produce renewable natural gas from manure so it can be added to the existing energy supply system for heating homes and powering industries. That would eliminate particularly harmful gases released by naturally decomposing manure when it is spread on farm fields as fertilizer and partially replace fossil natural gas, a significant contributor to global warming.

"There are multiple ways we can benefit from this single approach," said David Simakov, a professor of chemical engineering at Waterloo. "The potential is huge."

Simakov said the technology could be viable with several kinds of manure, particularly cow and pig manure, as well as at landfill sites.

In addition to being used by industries and in homes, renewable natural gas could replace diesel fuel for trucks in the transportation sector, a major source of greenhouse gas emissions.

To test the concept, researchers built a computer model of an actual 2,000-head dairy farm in Ontario that collects manure and converts it into biogas in anaerobic digesters. Some of that biogas is already used to produce electricity by burning it in generators, reducing the environmental impact of manure while also yielding about 30 to 40 percent of its energy potential.

Researchers want to take those benefits a significant step further by upgrading, or converting, biogas from manure into renewable natural gas. That would involve mixing it with hydrogen, then running it through a catalytic converter. A chemical reaction in the converter would produce methane from carbon dioxide in the biogas.

Known as methanation, the process would require electricity to produce hydrogen, but that power could be generated on-site by renewable wind or solar systems, or taken from the electrical grid at times of low demand. The net result would be renewable natural gas that yields almost all of manure's energy potential and also efficiently stores electricity, but has only a fraction of the greenhouse gas impact of manure used as fertilizer.

"This is how we can make the transition from fossil-based energy to renewable energy using existing infrastructure, which is a tremendous advantage," said Simakov, who collaborates with fellow chemical engineering professor Michael Fowler.

The modelling study showed that a $5-million investment in a methanation system at the Ontario farm would, with government price subsidies for renewable natural gas, have about a five-year payback period.

A paper on modelling of a renewable natural gas generation facility at the Ontario farm, which also involved a post-doctoral researcher and several Waterloo students, was recently published in the International Journal of Energy Research.
Published in Anaerobic Digestion
Long term trials conducted in Saskatchewan have shown the application of livestock manure fertilizer typically improves the health of the soil.

The University of Saskatchewan has been conducting long term livestock manure application trials, in some cases on plots that have been studied for over 20 years, looking at the implications of using livestock manure at various rates with different application methods throughout Saskatchewan's major soil climatic zones.

Dr. Jeff Schoenau, a professor with the University of Saskatchewan and the Saskatchewan Ministry of Agriculture research chair in soil nutrient management, says the organic matter in manure, especially in solid manures, can directly benefit things like soil structure, water retention and so on.

"I think in terms of effect on the soil, especially with the solid manures where we're adding a fair bit of organic matter to the soil, we certainly see some beneficial effects show up there in terms of increased organic matter content, increased carbon storage. We see some positive benefits as well in water relations, things like infiltration," said Dr. Schoenau.

"We also need to be aware that manures also contain salts and so, particularly some manure that may be fairly high in for example sodium, we do need to keep an eye on the salt and sodium content of the soil where there's been repeated application of manure to soils where the drainage is poor. Generally what we've found is that the salts that are added as manure in soils that are well drained really don't create any kinds of issues. But we want to keep an eye on that in soils that aren't very well drained because those manures are adding some salts, for example sodium salts."

Dr. Schoenau says, when manure is applied at a rate that is in balance with what the crop needs and takes out over time, we have no issues in terms of spill over into the environment. He says that balance is very important, putting in what you're taking out over time.
Published in Other
February 21, 2018, Tucker, GA – The U.S. Poultry & Egg Association recognized six poultry farm winners and three finalists who received the annual Family Farm Environmental Excellence Award at the International Poultry Expo, part of the 2018 International Production & Processing Expo.

The award is given annually in acknowledgment of exemplary environmental stewardship by family farmers engaged in poultry and egg production.

“It is a privilege to recognize these nine family farms for the excellent job they do in being good stewards of their land,” said Tom Hensley, president, Fieldale Farms, Baldwin, Ga., and newly elected U.S. Poultry chairman. “Our industry could not continue to operate and flourish without taking proper care of our natural resources. These six winners and three finalists are to be commended for their efforts.”

Applicants were rated in several categories, including dry litter management, nutrient management planning, community involvement, wildlife enhancement techniques, innovative nutrient management techniques and participation in education or outreach programs. In selecting the national winners and finalists, applications were reviewed and farm visits conducted by a team of environmental professionals from universities, regulatory agencies and state poultry associations.

The winners were chosen from six geographical regions from throughout the United States. They are as follows:

Northeast Region winner – Baker’s Acres, Millsboro, Del. Terry Baker Jr., nominated by Mountaire Farms

North Central Region winner – Herbruck’s Poultry Ranch, Saranac, Mich. Greg Herbruck, nominated by Eggland’s Best, LLC

South Central Region winner – 4 T Turkey Farm, California, Mo. Bill and Lana Dicus, nominated by Cargill

Southeast Region winner – Morrison Poultry, Wingo, Ky. Tim and Deena Morrison, nominated by the Kentucky Poultry Federation and Tyson Foods

Southwest Region winner – Woape Farm, West, Tex. Ken and Dana Smotherman, nominated by the Texas Poultry Federation and Cargill

West Region winner – Pickin’ N Pluckin’, Ridgefield, Wash. Rod and Glenda Hergert, nominated by Foster Farms

There were also three finalists recognized at the award presentation. They are as follows:

West Region finalist – Hiday Poultry Farms LLC, Brownsville, Ore. Randy Hiday, nominated by Foster Farms

Northeast Region finalist – Foltz Farm K, Mathias, W.Va. Kevin and Lora Foltz and sons, nominated by Cargill

South Central finalist – Featherhill Farm, Elkins, Ark. Bud and Darla O’Neal, nominated by Cargill

Published in Poultry
February 20, 2018, Western Grove, AR – Operators of an unpermitted hog farm in the Buffalo River's watershed must clear improperly stored hog manure and develop a plan to manage the manure by March 15, a judge has ordered.

But the farm won't have to shut down or get an operating permit, Boone County Circuit Judge Gail Inman-Campbell ruled this month. READ MORE
Published in Swine
February 9, 2018, Washington, DC – The National Pork Producers Council recently asked Congress for a legislative fix to a federal emergency response law that now requires farmers to report emissions from the natural breakdown of manure to the U.S. Coast Guard.

Testifying on behalf of NPPC, Dr. Howard Hill told members of the Senate Committee on Environment and Public Works that livestock producers and the U.S. Environmental Protection Agency never believed routine agricultural emissions from manure constituted the type of emergency or crisis the law was intended to address.

Last April, the U.S. Court of Appeals for the District of Columbia Circuit rejected a 2008 EPA rule that exempted farmers from reporting routine farm emissions under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Emergency Planning Community Right to Know Act (EPCRA).

CERCLA is mainly used to clean hazardous waste, and it and EPCRA include provisions that require entities to report on the release of various substances over certain thresholds.

The appeals court ruling will force “tens of thousands of livestock farmers to figure out how to estimate and report their emissions,” testified Hill, a veterinarian and pork producer from Cambridge, Iowa, and past president of NPPC. (More than 100,000 livestock farmers likely will need to file emissions reports by a May 1 deadline.)

He pointed out that while the pork industry is prepared to comply with CERCLA and EPCRA, EPA, the U.S. Coast Guard – which takes the emissions reports – and state and local emergency response authorities have said they don’t want or need the information, which could interfere with their legitimate emergency functions.

Hill also told the committee that pork producers are committed to responsibly managing their animals and the manure they produce to protect water and air quality and to maximizing manure’s benefit and value as a source of nutrients for the crops they grow. He said the pork industry, which has worked cooperatively with environmental regulators at the state and federal levels, supports federal environmental policies that: give producers performance expectations that have a high probability of resulting in meaningful environmental improvements; are practical and affordable; and provide producers a realistic amount of time to adapt measures and associated systems to their operations so they can continue to be profitable and successful.
Published in Air quality
February 5, 2018, Montpelier, VT – Gov. Phil Scott sketched out a plan at a recent dairy conference that could include making money from the pollutant plaguing Vermont’s waterways – phosphorus.

The proposal to “crowdsource” ideas to remove phosphorus from cow manure included no specific reduction goals and could take a minimum of 18 to 24 months to implement. READ MORE
Published in State
February 1, 2018, Burlington, VT – What’s a responsible farmer to do? Manure injection is an important soil management practice that reduces the chance of manure runoff. But recent studies by Carol Adair and colleagues at the University of Vermont show manure injection can increase the release of harmful greenhouse gases.

Greenhouse gases contribute to the warming of our atmosphere. Carbon dioxide gets the most attention because so much is released as we burn fossil fuels. Nitrous oxide (yes, the “laughing gas” the dentist may give you) is also a powerful greenhouse gas. There isn’t nearly as much of it in our atmosphere as carbon dioxide: it makes up only about five percent of the greenhouse gases, compared to 82 percent for carbon dioxide. However, it is a much more potent greenhouse gas, with a global warming potential nearly 300 times greater than carbon dioxide.

About 40 percent of all nitrous oxide emissions come from human activities, and agriculture is by far the greatest source. About 90 percent of that contribution comes from soil and nutrient management practices like tilling and fertilizing. This means that changes in these practices have great potential to reduce nitrous oxide emissions from agriculture. But there is also the potential to make them worse.

That’s where manure injection comes into the story. Animal manure has been used as a fertilizer for thousands of years. It is an excellent source of nutrients for plants and helps build good soil. Manure slowly releases nitrogen, one of the primary elements that help plants grow. Because of this slow release, it does not have to be applied as often as commercial fertilizer.

Traditionally, manure has been spread, or broadcast, onto the fields. However, with changing weather patterns some areas have had heavier rains and more flooding. Many farmers are taking steps to avoid manure runoff that can affect the quality of lakes and streams nearby. One such step is manure injection, a relatively new way of applying manure. It helps keep the manure on the crops and on the fields. Manure injectors insert narrow troughs of liquid manure six to eight inches deep into the soil.

“Unfortunately, at that depth conditions are just right for producing nitrous oxide,” said Adair.

The soils are often wet and there is little oxygen. This leads microbes in the soil to change the way they convert organic matter into energy. This alternative process changes nitrogen into nitrous oxide as a byproduct.

Adair and her colleagues have been studying the potential of tillage and manure application methods to reduce nitrous oxide emissions. They are comparing conventional tilling versus no-till systems, and broadcast versus manure injection.

Through several farm and laboratory experiments, they have found the tillage method has little impact on nitrous oxide emissions. However, manure injection significantly increases nitrous oxide emissions compared to the broadcast method. This is especially true soon after injection. Warming soil in the spring and more winter thaw/freeze cycles in winters also seem to increase emissions. And when warmer winters are combined with manure injection, this multiplies the effect, leading to even more nitrous oxide emissions.

Adair says ongoing research may show the cause of winter and spring emissions and whether there are steps that can reduce them. Perhaps cover crops grown between main-crop seasons will be able to reduce wintertime nitrous oxide emissions. And perhaps the timing of manure injection is important.

“Injecting during dry periods seem to reduce emissions, and it may be that fall injection results in smaller emission pulses, but we don’t have enough evidence of the latter yet,” Adair explains. “Our work continues so we can find better answers for growers, and protect the environment.”

Adair presented this research at the October Annual Meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America in Tampa, FL.
Published in Manure Application
February 1, 2018, Sacramento, CA – The California Department of Food and Agriculture (CDFA) has awarded $9.64 million in grant funding to 17 alternative manure management projects across the state.

These projects, part of the Alternative Manure Management Program (AMMP), will reduce greenhouse gas emissions on California dairy farms and livestock operations by using manure management practices that are alternatives to dairy digesters (i.e. non-digester projects).

The winning projects can be viewed here.

When livestock manure decomposes in wet conditions, it produces methane, a greenhouse gas 72 times more powerful than carbon dioxide. Changing manure management practices so that manure is handled in a dry form can help significantly reduce methane emissions. These reductions contribute to the state’s overall short-lived climate pollutant strategy under Senate Bill 1383, which aims to reduce California’s methane emissions to 40 percent below 2013 levels by 2030.

“California dairy farmers are leading the way in proactively addressing greenhouse gas emissions” said CDFA Secretary Karen Ross. “I am excited to see both the diversity of farms and the variety of non-digester manure management practices being adopted through these projects that will help meet the state’s climate goals.”

Financial assistance for the implementation of non-digester practices comes from California Climate Investments, a statewide initiative that uses Cap-and-Trade program funds to support the state’s climate goals. CDFA and other state agencies are investing these proceeds in projects that reduce greenhouse gas emissions and provide additional benefits to California communities. AMMP grant recipients will provide an estimated $2.7 million in matching funds for the development of their projects.

Information about the 2017 Alternative Manure Management Program projects is available at https://www.cdfa.ca.gov/oefi/AMMP/ .
Published in Dairy
January 29, 2018, Montpelier, VT – Vermont has a problem. The state is $1.2 billion short of the funding it will need to meet federal targets for reducing pollution in state waterways.

To solve that problem, Gov. Phil Scott recently suggested a creative solution in his budget address – turning the pollutant into a commodity and selling it out of state.

The pollutant is phosphorus, a primary ingredient of fertilizer, which is widely used in farming. READ MORE
Published in State
January 18, 2018, Kewaunee, WI – Kewaunee County officials Jan. 16 declined to pursue a moratorium on dairy herd expansion, saying it could hamper recent progress toward groundwater protection.

Corporation Counsel Jeff Wisnicky told the county Land & Water Conservation Committee that enforcement of regulations on manure land-spreading is better suited to the goal than trying to impose a moratorium on herd expansion. READ MORE



Published in Dairy
January 17, 2018, Des Moines, IA – Iowa lawmakers should halt construction on animal confinements until Iowa's water quality is significantly improved, a coalition of about two dozen state, local and national groups said Tuesday.

The Iowa Alliance for Responsible Agriculture asked lawmakers to support 15 bills tightening oversight of confinements introduced by Sen. David Johnson, an independent from Ocheyeden. READ MORE
Published in Associations
January 17, 2018, Kewanee, WI – The Wisconsin Department of Natural Resources has made a final determination clearing the way for a local dairy operation to be reissued a Wisconsin Pollutant Discharge Elimination System (WPDES) permit for its concentrated animal feeding operation in Casco.

The permit, effective Feb. 1, 2018, through Jan. 31, 2023, sets the effluent limitations, monitoring requirements and other conditions regarding the management and use of manure and process wastewater generated by the operation’s 5,250 animal units. READ MORE
Published in State
Page 1 of 48

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

2018 World Pork Expo
Wed Jun 06, 2018 @ 8:00AM - 05:00PM
Anaerobic Digester Operator Training – Wisconsin
Tue Jun 19, 2018 @ 8:00AM - 05:00PM
2018 North American Manure Expo
Wed Aug 15, 2018 @ 8:00AM - 05:00PM
2018 Canada's Outdoor Farm Show
Tue Sep 11, 2018 @ 8:00AM - 05:00PM
Farm Science Review 2018
Tue Sep 18, 2018 @ 8:00AM - 05:00PM