Environment Research
A ditch containing woodchips may look unassuming—but with a name like bioreactor it's guaranteed to be up to more than you think.

Bioreactors, which are woodchip-filled ditches and trenches, are often used near crop fields to filter the water running off of them. The woodchips enhance a natural process called denitrification that prevents too much nitrogen from getting into other bodies of water like rivers and streams.

"This process is a natural part of the nitrogen cycle that is done by bacteria in soil all around the world," explains Laura Christianson. Christianson is an assistant professor at the University of Illinois. "In a bioreactor, we give these natural bacteria extra food—the carbon in the woodchips—to do their job. These bacteria clean the nitrate from the water."

Because it is the bacteria that do this water-cleaning process, it's called a biological process, hence the name bioreactor. By giving them extra food (the woodchips have much more carbon than the surrounding soil), they are "super-powering" this natural process.

"Nitrate in ag drainage is often 100 percent pinned on fertilizer, but it's actually much more complicated," Christianson adds. "In short, nitrate in drainage comes from both fertilizer and manure applications and also importantly from natural nitrogen that exists in the soil."

Christianson studies how well different types of bioreactors take nitrogen out of the water. Her team's work has shown they are effective in the Midwest. Next, they wanted to test them in the Mid-Atlantic region, particularly the Chesapeake Bay watershed.

"Bioreactors are a farmer-friendly practice that has gotten a lot of interest in the Midwest, and so it made sense to see if bioreactors could also work for ag ditch drainage in the Mid-Atlantic," she says. "Why did we need to retest them? The key scientific question had to do with the different environment. Differences in the landscape between the Midwest and Mid-Atlantic regions required further testing."

The researchers tested three different kinds of bioreactors in the Chesapeake Bay area. They all treated water that was either headed to a drainage ditch or already flowing through a drainage ditch.

One was a bioreactor placed in a ditch. Another was a bioreactor next to a ditch. The last type was a sawdust wall that treated groundwater flowing very slowly under the ground to the ditch.

The group's findings showed that all three types worked in reducing the amount of nitrogen headed from the field into nearby water.

This is good news for watersheds. Too much nitrogen throws off the balance of nitrogen in bodies of water and can set off a process that results in the death of the water's plants and fish. For this current research, the goal was to limit the nitrogen getting from the Mid-Atlantic into the Chesapeake Bay.

The next step in this research, Christianson says, is to further test bioreactors in this area and others so they are better constructed and more effective.

"This is a relatively easy idea that cleans up water without taking much of farmers' time or land," she says. "We need practical solutions like this so farmers can continue to produce food and fiber, while also protecting natural resources. I like that it's a natural process; we're just enhancing it. There's a nice simplicity to it."

Learn more about this work in Agricultural & Environmental Letters. Christianson's research is also highlighted at https://www.agronomy.org/about-agronomy/at-work/laura-christianson. The research was funded by the USDA Natural Resources Conservation Service Conservation Innovation Grant.
Published in News
Beef and dairy farmers around the world are looking for ways to reduce methane emissions from their herds to reduce greenhouse gas emissions – a global priority. To help meet this goal, researchers from Canada and Australia teamed-up for a comprehensive three-year study to find the best feeding practices that reduce methane emissions while still supporting profitable dairy and beef cattle production.

"We need to know how feed affects methane production, but we also need to know how it affects other aspects of the farm operation, like daily gains in animals, milk production, and feed efficiency. Farmers want to help the environment, and they need to know what the trade-offs will be, which is why we took a holistic approach looking at the overall impacts," explains Dr. Karen Beauchemin, beef researcher from Agriculture and Agri-Food Canada (AAFC).

Researchers and farm system modellers from Agriculture and Agri-Food Canada, Agriculture Victoria (Australia), and the University of Melbourne, worked together to examine three feed supplements.

Methane inhibitor supplement 3-nitrooxypropanol (3NOP) could reduce costs and increase profits

3NOP is a promising commercial feed supplement that can be given to cattle to inhibit the enzyme methyl coenzyme M reductase – an enzyme responsible for creating methane in the animal's rumen (first stomach). After blocking the enzyme, 3NOP quickly breaks down in the animal's rumen to simple compounds that are already present in nature.

AAFC's Dr. Beauchemin studied the short- and long-term impacts of feeding 3NOP to beef cattle and shared her findings within the broader study.

"We now have clear evidence that 3NOP can have a long-term positive effect on reducing methane emissions and improving animal performance. We saw a 30-50% reduction in methane over a long period of time and a 3-5% improvement in feed efficiency," Beauchemin says.

Producing milk, gaining weight, and creating methane all take energy that a cow fuels by eating. Cattle eating a diet that contained the 3NOP supplement produced less methane. And, because there was less methane more energy could be used by the animal for growth. When using this supplement, cattle consumed less feed to gain a pound of body weight compared to control animals.

"What is also great is that the inhibitor worked just as effectively no matter what type of feed the cattle were eating," Beauchemin explains. "We don't know the actual market price of the supplement yet because it is still going through approvals for registration in Canada and the U.S. That will be important for farmers who want to calculate the cost-benefit of using 3NOP to reduce methane emissions from their cows and enhance profits."

The Story of Nitrate
Microorganisms in the cattle's rumen need nitrogen to be able to efficiently break down food for the animal to absorb. Nitrate is a form of non-protein nitrogen similar to that found in urea, a compound used in cattle diets. When nitrate is fed to cattle, it is converted to ammonia which is then used by the micro-organisms. During this process, nitrogen in the nitrate works like a powerful magnet that is able to hold onto and attract hydrogen. This leaves less hydrogen available in the rumen to attach to carbon to make methane, thus reducing the amount of methane produced.

Researchers in Canada found that adding nitrate to the diet of beef cattle reduces methane production by 20 percent in the short-term (up to three weeks), and after 16 weeks it still reduced methane up to 12 percent. In addition, feeding nitrate improved the gain-to-feed ratio. However, administering the correct dosage is extremely important, as too much nitrate can make an animal ill. So it is recommended this method should be used with care and caution.

Dr. Richard Eckard, a researcher from the University of Melbourne explained "I understand that in Canada, most forages are not that low in protein. But in the rangelands of northern Australia, the protein content in the forage is extremely low. It is possible that adding nitrate to Australian cattle feed may be able to improve the feeding regime from the current use of urea, but it depends on the price."

To supplement or not supplement with wheat, corn, or barley?

In the short term, wheat effectively reduced methane production by 35 percent compared with corn or barley grain; but, over time cattle were able to adapt to the change in feed and the methane inhibitory effect disappeared. Essentially, after 10 weeks, methane production was the same for corn, barley, and wheat.

The study also showed genetic variation in cows where about 50 percent of the cows that were fed wheat remained low in their methane emissions, even for as long as 16 weeks. However, the other cows adapted to the wheat diet and had methane emissions similar to, or even greater than those fed diets containing either corn or barley. Based on genetics, some cows are more adaptable than others and, in the long-term, it is more difficult to reduce the amount of methane they produce.

For dairy cows, Dr. Peter Moate, Dairy Researcher with Agriculture Victoria, was particularly intrigued about the link between milk fat, yield and methane emissions.

"We found that feeding cows wheat increased milk yield but fat levels decreased. For the farmer, it really depends on what they want to achieve in order to say whether this makes sense economically," explained Moate. "Overall, feeding wheat didn't have the long-term ability to reduce methane emissions, so it really couldn't be recommended as a best practice to achieve this type of goal."

Lessons learned
"Our better understanding of feeding regimes will make a difference for farmers, but more importantly this research has really helped us understand more precisely the volume of greenhouse gases (GHGs) the industry is producing under different feed regimes. This is powerful information for policy makers," stated Beauchemin.

This is particularly true for countries that have implemented or are thinking about putting a price on carbon or a carbon trading scheme in place to reduce GHG emissions.

"By adopting different farming methods to reduce GHGs, farmers may be able to sell these "carbon credits" for revenue. But the key is to prove that these farming methods work and warrant being officially recognized for carbon credits. This work is one step closer in this process" explains Beauchemin.

While this project has wrapped-up, the work has not ended. Researchers in both countries unanimously agree that they will continue to help farmers and the industry find solutions to reducing their carbon footprint.
Published in Beef
There's a farm in Arkansas growing soybeans, corn, and rice that is aiming to be the most scientifically advanced farm in the world. Soil samples are run through powerful machines to have their microbes genetically sequenced, drones are flying overhead taking hyperspectral images of the crops, and soon supercomputers will be crunching the massive volumes of data collected.

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), working with the University of Arkansas and Glennoe Farms, hope this project, which brings together molecular biology, biogeochemistry, environmental sensing technologies, and machine learning, will revolutionize agriculture and create sustainable farming practices that benefit both the environment and farms.

If successful, they envision being able to reduce the need for chemical fertilizers and enhance soil carbon uptake, thus improving the long-term viability of the land, while at the same time increasing crop yields. For the full story, CLICK HERE.
Published in News
Arlington, Virginia - Frank Mitloehner, PhD, will debunk myths about animal agriculture's environmental impact at the Animal Agriculture Alliance's 2018 Stakeholders Summit, set for May 3-4, at the Renaissance Capital View Hotel in Arlington, Va.

Mitloehner is a professor and extension air quality specialist in the Department of Animal Science at the University of California, Davis. He is an expert on agricultural air quality, livestock housing and husbandry. Overall, he conducts research that is directly relevant to understanding and mitigating of air emissions from livestock operations, as well as the implications of these emissions for the health and safety of farm workers and neighboring communities.

"There is a lot of misinformation about how much animal agriculture actually contributes to the nation's greenhouse gas emissions and overall environmental impact," said Kay Johnson Smith, Alliance president and CEO. "With the industry's commitment to continuous improvement, Summit attendees will find Mitloehner's research enlightening and refreshing."

The Alliance also announced that the Summit has been approved for eight continuing education credits by the American Registry of Professional Animal Scientists. ARPAS members in attendance can request credit using www.arpas.org or by contacting Cornicha Henderson at This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

To register, visit http://animalagalliance.org/summit. Be sure to check the Summit website for the most up-to-date Summit information. You can also follow the hashtags #AAA18 and #ProtectYourRoots for periodic updates about the event. For general questions about the Summit please contact This e-mail address is being protected from spambots. You need JavaScript enabled to view it  or call (703) 562-5160.
Published in News
Assistant professor of environmental studies Cassie Gurbisz was among 14 co-authors of a new research article published this week in the Proceedings of the National Academy of Sciences.

The article reports the positive impact of long-term nutrient reductions on an important and valuable ecosystem in the Chesapeake Bay. Scientists indicate the resurgence of underwater grasses supports nutrient reductions from EPA's Total Maximum Daily Load (TMDL). This, along with conservation incentives, has resulted in a healthier Chesapeake Bay.

Jonathan Lefcheck, PhD, formerly of the Virginia Institute of Marine Science and now at the Bigelow Laboratory for Ocean Science, along with Gurbisz and 12 co-authors, shows that a 23 percent reduction of average nitrogen levels in the Bay and an eight percent reduction of average phosphorus levels have resulted in a four-fold increase in abundance of Submerged Aquatic Vegetation (SAV) in the Chesapeake Bay. This ecosystem recovery is an unprecedented event; based on the breadth of data available and a sophisticated data analysis, this is the biggest resurgence of underwater grasses ever recorded in the world.

The researchers employed advanced analytical tools to definitively show how the reduction of excess pollutants like nitrogen and phosphorus are the cause of this ecosystem recovery. To link land use and Chesapeake Bay status, researchers analyzed data in two different ways: one focusing on the cascade of nutrients from the land to the waterways, and one showing what happens to SAV once the nutrients are in the water.

Gurbisz said she participated in a series of workshops with scientists who study various aspects of SAV ecology. She said she helped develop the conceptual basis of the project and was excited that the work generated relevant results related to restoring the Chesapeake Bay.

The published findings are a collaborative effort between the following agencies: Virginia Institute of Marine Science, University of Maryland Center for Environmental Science, Environmental Protection Agency Chesapeake Bay Program, U.S. Geological Survey, National Socio-Environmental Synthesis Center, St. Mary's College of Maryland, Smithsonian Environmental Research Center, Maryland Department of Natural Resources, and Texas A&M University-Corpus Christi.

Published in News
Gibsonburg, Ohio - An agricultural scientist said farmers are contributing to the efforts to reduce the phosphorus runoff that leads to Lake Erie's harmful algal blooms, but cautioned that the battle must continue.

Mark Riehl, an agronomist with Sunrise Cooperative, spoke at the Sandusky County Chamber of Commerce's 2018 Ag Week Kickoff Breakfast on Friday at Ole Zim's Wagon Shed in Gibsonburg.

"The phosphorus cycle and how it occurs is rather complicated," Riehl said. "That's part of the reason why this isn't a quick-resolve issue." | READ MORE
Published in News
The same products that get rid of internal parasites in livestock may adversely impact the dung beetles that help break down dung, according to South Dakota State University assistant professor Lora Perkins of the Department of Natural Resource Management. That could be bad news for the dung beetles and livestock production.

Through a four-year U.S. Department of Agriculture grant, Perkins and three colleagues will examine how producers' use of products to control parasites, known as parasiticides, has changed and how that has impacted the dung beetle population, soil quality and forage production. The National Institute of Food and Agriculture funding is part of the Bioenergy, Natural Resources and Environment Program, which focuses on the environmental sustainability of rangeland livestock production.

"Dung beetles are little drivers of ecosystem function," Perkins said. "They turn a big pile of dung into nutrients in the soil that can be taken up again by plants." Previous SDSU research looked at the biodiversity of dung beetles and other insects that populate dung pats. "We're adding onto that research and moving it all the way through to forage production," she explained.

Perkins, assistant professor. A. Joshua Leffler and professor Paul J. Johnson, an entomologist, will examine areas at the Ft. Pierre National Grasslands which are used by different livestock producers. Some producers use parasiticides to control parasites; others don't. "By conducting our research at Ft. Pierre, we are able to study areas that are adjacent to one another so the environmental variation among study areas is minimal," Perkins explained.

The researchers will measure the dung beetle population and examine how rapidly the dung is incorporated into the soil. They will measure nitrogen in the soil and plant production by weighing the biomass.

"Nitrogen availability is a key factor limiting forage production, and dung beetles are key organism in making nitrogen available to plants," Leffler explained. One doctoral student will also work on this portion of the project, with fieldwork beginning this summer.

However, what makes this project unique is collaboration with assistant sociology professor Jessica Ulrich-Schad. She will survey approximately 2,500 livestock producers to see whether they use parasiticides to control parasites in their livestock or not, whether that has changed over time and why. She will also ask how the parasiticides they are using have changed and what led to those changes. "Jessica is a critical member of our team. She helps us bridge the gap between the technical analyses and landowners and managers" said Perkins.

"We want to understand the drivers behind the use of these products," said Ulrich-Schad, who began exploring producer decision-making as a postdoctoral researcher at Purdue University. "We must get a better grasp of how farmers are making these decisions to know how we can encourage them to voluntarily use practices that are good for soil and water quality."

Through the survey, she will examine producers' awareness of how these parasiticides can impact dung beetle population, soil quality and forage production, as well as the roles that social networks play in the practices they use and the awareness they have. One doctoral student will work with Ulrich-Schad. Preliminary interviews with seven producers she characterized as innovators revealed that some are noticing a decrease in the dung beetle populations.

"When dung piles accumulate, fields become 'fouled'—livestock won't eat by the pile," Perkins explained. "We need the beetles to help break down the dung and keep the nutrients flowing and the plants growing." Research at other universities also shows that the presence of dung beetles can reduce the survival of parasite larvae in the dung pats.
Published in Other
Long term trials conducted in Saskatchewan have shown the application of livestock manure fertilizer typically improves the health of the soil.

The University of Saskatchewan has been conducting long term livestock manure application trials, in some cases on plots that have been studied for over 20 years, looking at the implications of using livestock manure at various rates with different application methods throughout Saskatchewan's major soil climatic zones.

Dr. Jeff Schoenau, a professor with the University of Saskatchewan and the Saskatchewan Ministry of Agriculture research chair in soil nutrient management, says the organic matter in manure, especially in solid manures, can directly benefit things like soil structure, water retention and so on.

"I think in terms of effect on the soil, especially with the solid manures where we're adding a fair bit of organic matter to the soil, we certainly see some beneficial effects show up there in terms of increased organic matter content, increased carbon storage. We see some positive benefits as well in water relations, things like infiltration," said Dr. Schoenau.

"We also need to be aware that manures also contain salts and so, particularly some manure that may be fairly high in for example sodium, we do need to keep an eye on the salt and sodium content of the soil where there's been repeated application of manure to soils where the drainage is poor. Generally what we've found is that the salts that are added as manure in soils that are well drained really don't create any kinds of issues. But we want to keep an eye on that in soils that aren't very well drained because those manures are adding some salts, for example sodium salts."

Dr. Schoenau says, when manure is applied at a rate that is in balance with what the crop needs and takes out over time, we have no issues in terms of spill over into the environment. He says that balance is very important, putting in what you're taking out over time.
Published in Other
Nitrate levels above the drinking water standard of 10 ppm are frequently found in subsurface drainage tile water or groundwater below farm fields of the upper Midwest. Nitrogen comes from applied manure and fertilizer, along with natural mineralization of organic matter.

What was done
Winter cereal rye planted as a cover crop has been shown effective in capturing nitrate before it leaches from the root zone. We conducted on-farm trials in central and southern Minnesota to determine if a rye cover crop would capture significant root-zone nitrate in the fall and spring but release it in time to maintain yield in the subsequent corn crop.

In the fall of 2015 and 2016, we partnered with 19 farmers (ten in 2015 and nine in 2016) to drill strips of cereal rye immediately after harvest of corn silage or soybean. After the rye was established and soil temperatures began to fall, we injected liquid dairy or swine manure into the cover crop and check strips. Three replications (with and without cover crop) were planted as wide or wider than the farmer's combine or silage chopper. The following spring, we sampled the cover crop for biomass and nitrogen content. We also soil sampled the cover crop and check strips to a 24-inch depth for nitrate. The rye was terminated, usually before reaching eight inches in height. In most cases, the rye was terminated with herbicide and tilled in. Corn was planted in the cover crop and check strips, usually with a small amount of starter nitrogen. We measured yield and nitrogen content of the corn at harvest.

Fall manure injection into cereal rye cover crop.

Fall manure injection into cereal rye cover crop.
Cereal rye at same location two weeks after manure injection

Cereal rye at same location two weeks after manure injection
Spring rye growth at the same site.

Spring rye growth at the same site.

Our results indicated
Spring Soil 24 inch Nitrate. Cover crop had 124 pounds of nitrate nitrogen per acre. No cover crop had 202 pounds of nitrate nitrogen per acre. The difference was 78 pounds of nitrate nitrogen per acre.

In both years, adequate growing season existed to establish the rye cover crop after either corn silage or soybean harvest, but above-ground fall growth was limited.

The rye was very resilient to manure injection, however, stand reduction was considerable at two sites where shank injectors or disk coverers were too aggressive.

Spring rye growth was good at most sites, with soil nitrate reduced under the cover crop compared to the check strips at all sites.

Rye growth and nitrogen uptake were greater in southern than central Minnesota.
Across sites, there was no significant difference in silage or grain yield between the cover crop and check strips.

Grain yield adjusted to 15 percent moisture. Cover crop yielded 199.5 bushels per acre whereas no cover crop yielded 201.2 bushels per acre.

Corn silage yield adjusted to 65 percent moisture. Cover crop yielded 20.7 tons per acre whereas no cover crop yielded 20.8 tons per acre.

Take home message
We concluded that, in central and southern Minnesota, it is feasible to establish cereal rye cover crop after corn silage or soybean harvest, inject liquid manure, capture root-zone nitrate with the rye, and deliver sufficient nitrogen to the subsequent corn crop.

Additional experiments are needed to determine any nitrogen recovery effect of no-till vs tillage termination, as well as supplemental nitrogen needs if the rye were terminated at a later maturity.

Authors: Les Everett, University of Minnesota Water Resources Center and Randy Pepin, University of Minnesota Extension

Reviewer: Melissa Wilson, University of Minnesota and Mary Berg, North Dakota State University
Published in Manure Application
January 26, 2018, Storrs, CT – Understanding the source of contaminants in waterways is crucial for public health and safety, and a University of Connecticut professor is developing an easy way to do just that.

All contamination will eventually find its way downstream. In Connecticut that means it may travel through neighborhoods where residents swim, to larger recreational areas such as beaches, and eventually to the Long Island Sound and shellfish beds. And, without knowing the exact source of the problem, the contamination can’t be addressed.

John Clausen of University of Connecticut’s Department of Natural Resources and the Environment, is now testing a protocol he developed to find the source. Clausen started this project almost by chance when he realized that a method had not yet been developed.

“I discovered that no one has perfected the technique for being able to look at a water sample, find E. coli and tell you where it came from, so that’s my quest,” he says.

The first step toward this goal was to identify the streams to monitor, which was a rigorous process, says Clausen.

While there are plenty of waterways in the state that are contaminated – 200 in 2016, according to Connecticut’s Department of Energy and Environmental Protection – the streams needed to pass by farmland.

Farm animals and animals, in general, are often the source of the contamination. So Clausen started in the Thames river Basin, initially picking more than 30 sites and then narrowing that number down to 10 streams.

Once the sites were chosen, Clausen installed a type of water sampler at each location to collect samples whenever there is a significant rainfall event.

“When you get one-to-two inch storms, you really get high E. coli values,” says Clausen.

To help with the collection efforts, the researchers coordinated volunteers to collect and deliver the water samples from all of the sites after heavy rain events. Clausen says they’ve become very good at watching the weather to determine when to collect samples.

Then the samples with high contamination are sent to a lab to quantify the level of coliform bacteria from animal sources.

Now Clausen is designing tests for E. coli specifically. He and his team of student researchers are developing tests for chicken, horse, cow and human sources. The process involves collecting fecal samples, isolating the bacteria and their DNA, pinpointing species specific markers to target and then working out the fine details to optimize the tests.

“We are now in the statistics part of development. This winter we’ll be sequencing to see how well our tests match up with the bacteria in the water samples,” says Clausen.

The overall goal is to identify producers and sources of contamination so remediation efforts can be put in place. Clausen points out that industry already has best practices to reduce E. coli in waterways from agricultural sources, manure management being one of those. When manure is not handled properly, for example, bacteria-rich runoff can easily make its way into our waterways.

“Just storing manure in holding tanks is very effective. There is a die-off period for pathogens, after which the manure can be spread more safely,” Clausen says.

Unfortunately for farmers, holding tanks are pricey and other best practices are not always easy to carry out.

But fortunately in the case of E. coli, unlike that for other types of runoff such as fertilizers, the E. coli that make their way into the watershed don’t seem to persist for quite so long.

Once bacterial source tracking is available and sources of contamination are identified, remediation efforts could potentially have a big impact on returning streams to safe levels fairly quickly.

“I’ve already had officials ask if we can start testing,” says Clausen. “We’re not there yet, but I think we’re close.”
Published in Other
January 11, 2018, Madison, WI – While April showers might bring May flowers, they also contribute to toxic algae blooms, dead zones and declining water quality in U.S. lakes, reservoirs and coastal waters, a new study shows.

In the Midwest, the problem is largely due to phosphorus, a key element in fertilizers that is carried off the land and into the water, where it grows algae as easily as it grows corn and soybeans.

Previous research had found that waterways receive most of their annual phosphorus load in only a dozen or two events each year, reports Steve Carpenter, director emeritus of the University of Wisconsin-Madison's Center for Limnology and lead author of a new paper published online in the journal Limnology and Oceanography.

The paper ties those phosphorus pulses to extreme rain events. In fact, Carpenter says, the bigger the rainstorm, the more phosphorus is flushed downstream.

Carpenter and his colleagues used daily records of stream discharge to measure the amount of phosphorus running into Lake Mendota in Madison, Wisc., from two of its main tributaries.

The dataset spanned a period from the early 1990s to 2015. The scientists then looked at long-term weather data and found that big rainstorms were followed immediately by big pulses of phosphorus.

The researchers reviewed stream data from the same period, when seven of the 11 largest rain storms since 1901 occurred.

"This is an important example of how changes in one aspect of the environment, in this case precipitation, can lead to changes in other aspects, such as phosphorus load," said Tom Torgersen, director of the National Science Foundation's (NSF) Water, Sustainability and Climate program, which, along with NSF's Long-Term Ecological Research (LTER) program, funded the research.

“This study's findings, which depend on long-term data, are important to maintaining water quality not only today, but into the future," added David Garrison, chair of NSF's LTER Working Group.

Carpenter agreed. "Without long-term data, this research would never have happened."

The next steps, he said, need to include new strategies for managing nutrient runoff.

Farmers and conservation groups now use several strategies to try to slow water down and capture some of the sediment and fertilizer it carries as it runs off a field.

"But we're not going to solve the problem with buffer strips or contour plowing or winter cover crops," said Carpenter. Although those practices all help, he said, "eventually a really big storm will overwhelm them."

The best available option for protecting water quality is to keep excess phosphorus off the landscape, Carpenter said.

"A rainstorm can't wash fertilizer or manure downstream if it isn't there."

Carpenter noted that while there are countless acres in the Midwest that are oversaturated with phosphorus, there are also places that aren't. And that, he said, "is an encouraging sign. Some farmers are having success in decreasing their soil phosphorus, and we could learn from them."

“This analysis clearly shows that extreme rainfall is responsible for a large amount of the phosphorus that flows into inland waters,” added John Schade, an NSF LTER program director. “Now, we need to develop nutrient management strategies to meet the challenge. Without long-term data like those presented here, the impact of these events would be difficult to assess."
Published in Other
November 30, 2017, University Park, PA – A new study of methane emissions from livestock in the United States – led by a researcher in Penn State's College of Agricultural Sciences – has challenged previous top-down estimates.

The research was conducted because serious discrepancies exist between top-down estimates that suggest the U.S. Environmental Protection Agency is underestimating agricultural methane emissions by up to 90 percent, and bottom-up estimates accepted by the federal government showing lower emissions.

Top-down emissions estimates involve monitoring atmospheric methane concentrations by satellites or from air samples collected at high altitude by planes, and using models to estimate the sources of emissions. Bottom-up estimates take into account livestock populations and animal emission factors.

In their detailed analysis, researchers used a spatially explicit, bottom-up approach, based on animal inventories and feed-intake-based emission factors, to estimate enteric methane emissions for cattle and manure methane emissions for cattle, swine and poultry for the contiguous United States.

The researchers estimated methane emissions using a "gridded" approach, dividing the U.S. into 0.1 by 0.1-degree GIS units, which created cells from 31 square miles in the northern United States to 42 square miles in the southern part of the country.

"This level of detail enabled us to more accurately assess agricultural methane emissions based on activities involving livestock," explained lead researcher Alex Hristov, professor of dairy nutrition, who is a member of the current National Academy of Sciences Anthropogenic Methane Committee.

"We must have more specific information about methane emissions that combines local livestock populations and characteristics with distribution of landscape features – and a gridded inventory approach provides that," he said.

According to the EPA, the top three sources of anthropogenic methane in the United States are the combined energy sector – natural gas, petroleum systems and coal mining – which makes up 40 percent of the total; livestock, 36 percent of the total; and landfills, 18 percent of the total.

Methane emissions from livestock operations are the result of microbial fermentation and methanogenesis in the forestomach of ruminants and similar fermentation processes in manure from both ruminant and non-ruminant farm animals.

Methane is also produced from enteric fermentation in the digestive tract of non-ruminant herbivore species, such as horses, donkeys and mules, as a result of fermentation processes in their hindgut. However, "hindgut fermenters" do not produce nearly as much methane per unit of fermented feed as ruminants, so enteric or manure emissions from equine species were not included in this analysis. Neither were emissions from small ruminants such as sheep and goats, which are negligible in the U.S.

County-level, annual enteric methane emissions for all states were estimated for cattle only. A total of 3,063 counties in the contiguous U.S. were included in the cattle methane emission database.

Cattle inventories by county were obtained from the 2012 Census of Agriculture, which is the last census data currently available. Body weight data for cattle was derived from EPA records and dry matter feed intake was estimated based on National Research Council prediction equations for the various categories of cattle. Methane emission yield factors were calculated for each cattle category.

Overall, the research, which was published this month in Environmental Science and Technology, yielded total U.S. livestock methane emissions of 19.6 billion pounds per year. However, uncertainty surrounding that total is high, researchers acknowledged.

Compared with enteric methane, predicting methane emissions from manure is a more complex process and carries a larger uncertainty in the estimates, the researchers pointed out. Manure composition, type of storage facilities and manure retention time, and environment – particularly temperature – are among the factors that affect methane emissions from manure.

There is great uncertainty in both enteric and manure methane emissions from livestock, Hristov conceded. He said that research around the world has shown that variability in enteric methane emissions largely can be explained with variability in feed dry-matter intake. Nutrient composition of the feed is also important but has a lesser impact on enteric methane production.

"If methane emissions from livestock in this country really are twice as high as what is estimated now — and we don't believe they are — that would put a big target on agriculture to take measures to cut these emissions," said Hristov. "Having an accurate and spatially explicit assessment of methane emissions from livestock is critical for reconciliation of top-down and bottom-up approaches, and it's the starting point in any mitigation effort."

"Our analysis showed that the EPA’s estimates are close to reality, but there is a discrepancy in the spatial distribution of emissions. And, our research revealed a great discrepancy with global models such as the EDGAR (Emission Database for Global Atmospheric Research) inventory."

ExxonMobil Research and Engineering Company partially funded this research.
Published in Air quality
October 16, 2017, Olympia, WA – The Washington State Department of Agriculture proposes to study whether it should regulate cow manure hauled from dairies and spread at other commercial farms.

WSDA monitors how dairies use manure, but the oversight ends when manure goes elsewhere. The department hopes to get a grasp on whether those manure applications threaten groundwater and waterways. READ MORE
Published in Dairy
October 3, 2017, Mankato, MN — Minnesota's namesake river is straining from a big increase in water flow caused by farm drainage systems, heavy with nitrates that threaten Mankato's drinking water supply, according to a study conducted by the Minnesota Pollution Control Agency (MPCA).

A summary of the study (pca.state.mn.us/mn-river-study) was released October 2 at a park next to the Minnesota River.

Based on recent water monitoring and decades of research, overall the Minnesota River is suffering in water quality. Sediment clouds the water, phosphorus fuels algae growth and nitrogen and bacteria pose health risks. READ MORE



Published in State
August 30, 2017, Ohio - When hay is harvested nutrients are removed from the field. A ton of alfalfa removes approximately 13 pounds of phosphorus (as P2O5) and 50 pounds of potash (as K2O). According to the National Agricultural Statistics Service, Ohio harvested 2.6 tons per acre of alfalfa in 2016.

Many hay fields are not pure alfalfa. The acidic soils of the southern and eastern parts of the state make it difficult to maintain an alfalfa or clover stand so a mixed stand of grass and alfalfa/clover is common. Stands in older fields are often just mostly grass. A grass hay crop will remove just as many nutrients per ton as an alfalfa crop. The big difference is that the annual yields from grass hay fields are usually about 1.3 tons per acre lower than alfalfa fields.

Livestock manure can be used as a fertilizer source to replace nutrients removed through hay harvest. Pen pack beef manure will contain approximately 7.9 pounds of nitrogen (mostly in the organic form), 4.4 pounds of phosphorus (P2O5) and 6.6 pounds of potash (K20) per ton according to OSU Extension bulletin 604. Note that these are older book values and your actual farm manure nutrient levels can vary depending upon the animal's ration, the amount and type of bedding material used and how manure is stored and handled. The recommendation is to sample and test manure at least on a yearly basis. This will provide a more reliable indication of the actual nutrient content of the manure on your farm. For more information about how and when to sample manure, Penn State Extension has a good publication available on-line at http://extension.psu.edu/plants/nutrient-management/educational/manure-storage-and-handling/manure-sampling-for-nutrient-management-planning.

Let's assume a livestock producer wants to use pen pack beef manure to replenish the nutrients in a hay field where he harvested three tons per acre of hay. Since alfalfa and grass hay both remove similar amounts of nutrients per ton, we can assume the three tons of hay removed per acre contained 39 pounds of P2O5 and 150 pounds of K2O. If pen pack beef manure was used to replenish these nutrients, 8.8 tons per acre would be sufficient to replace the phosphorus. However, a rate of 22.7 tons per acre would be needed to replace the potash. The 22.7 ton per acre manure application rate would result in almost 100 pounds of P2O5 being applied per acre, far more than was removed in the three tons of hay.

A farmer would need to be cautious about using this practice repeatedly and growing the soil phosphorus level. It takes about 20 pounds of phosphorus applied to a field to raise the soil test level one pound per acre or two parts per million. So if the soil test level is low, the additional phosphorus from the manure would not raise the soil phosphorus level much in a single year.

The key to using livestock manure to replace the nutrients removed through hay harvest is to get even distribution of the manure across the entire field. Having mowed hay fields as a teenager, where bedded pack manure was applied, I would strongly urge an even distribution pattern across the field. Avoid large clumps that will plug the mower or interfere with regrowth.

If you are unsure how many tons per acre your solid manure spreader applies there is a simple way to make a determination. Make a heavy plastic piece that is 56 inches by 56 inches. Fasten it to the ground with weights on the corners and apply manure across the plastic. Fold up the plastic and weigh the manure captured. Many people use a bathroom scales for this. One pound of manure captured on the plastic is equivalent to one ton of manure applied per acre. Thus, if you captured 10 pounds of manure the application rate was 10 tons per acre.

It is common for county extension offices to have farmers ask; "Can manure be applied between cuttings"? The answer is "yes". Farmers commonly use liquid swine and liquid dairy manure between cuttings to replace soil nutrients and "boost" regrowth of the forage crop in northwest Ohio. There is the potential to damage the crowns of the forage plants but most farmers seem to like the results of the manure application. Solid manure could also be applied between cuttings instead of waiting until fall to apply the manure. The manure application should take place as some as the hay is baled.

Liquid beef manure is also being used to replace nutrients in hay fields. Liquid beef manure we have sampled has contained 40 pounds nitrogen (about half in the organic form and half in the ammonium form), 35 pounds of phosphorus (P2O5) and 30 pounds of potash (K20) per 1000 gallons of product. Applied with a drag hose, this can be an excellent fertilizer for a forage.

A final cautionary note regarding manure application to forage fields: If manure is coming from a herd with animals infected by Johne's disease, that disease can be transmitted by manure to healthy cattle. According to a publication from the US Dairy Forage Research Center at Madison Wisconsin and authored by Michael Russelle and Bill Jokela, the Johne's bacterium can survive on hay. Therefore, those authors' recommendation is that in herds with Johne's, manure should not be applied as a topdressing on fields that will be harvested as dry hay.
Published in Other
All farmers strive to be good stewards of the soil in their fields and the surrounding environment, but they need both solid research and the right tools to optimize their success.

Phosphorus is obviously of particular concern to crop farmers.

“The harmful algae blooms occurring in Lake Erie appear to be from increasing amounts of dissolved phosphorus reaching the lake,” says Glen Arnold, associate professor and field specialist in Manure Nutrient Management Systems at Ohio State University Extension. “The phosphorus in livestock manure is less likely to reach surface waters than the phosphorus in commercial fertilizer, as the phosphorus in livestock manure is slower to become soluble once applied to fields.”

However, Arnold notes that the over-application of livestock manure can raise soil phosphorus to very high levels and result in the element being lost through both surface runoff and through subsurface drainage tiles.

Arnold believes finding new ways of applying manure to growing crops and incorporating the manure more effectively could better assure the phosphorus stays put. His research on the application of manure to growing crops first started with topdressing wheat plots in Putnam County, Ohio, in 2004.

“We wanted to capture value from the nitrogen in manure and open up new windows of application for farmers, instead of them usually applying large amounts of manure in the fall after harvest,” he explains.

Arnold and his team approached swine farmers with finishing buildings for the wheat plot experiments, as swine manure has more nitrogen per gallon than dairy or beef manure. The Putnam County Extension Office and Soil & Water Conservation District collaborated on planning, flagging the replicated plots, field application and harvesting, with plots either receiving urea fertilizer or swine manure. When the results were analyzed, wheat yields under the manure treatments were equal to or greater than the urea treatment most of the time.

By 2009, Arnold, his colleagues and county extension educators in nearby counties were using swine manure to side dress corn plots.

“We removed the flotation wheels from a manure tanker and replaced them with narrow wheels so the manure tanker could follow the tractor down the cornrows,” he says. “The yield results were very positive as the manure treatments were similar to the commercial fertilizer treatments. During unusually dry growing seasons, the manure treatments out-yielded the commercial manure treatments. The same occurred during unusually wet growing seasons as well.”



In addition to the swine-finishing manure side dress plots, during the past year the team tried liquid beef manure and liquid dairy manure, enhanced with commercial nitrogen, to side dress corn plots.

“We used a manure tanker and Dietrich toolbar,” Arnold says. “The beef manure plots performed as well as the swine manure plots. The dairy manure plots also preformed very well, which opens many possibilities for dairy producers to sidedress corn in the years ahead.”

At this point, the team has also completed a third year of side dressing emerged corn with swine manure in Darke County, Ohio, using a drag hose. The drag hose was pulled across the emerged corn through the V3 stage of growth, and the manure incorporated during application using a seven-row VIT unit. Over three years, the corn side dressed with manure averaged 13 bushels per acre more than corn side dressed with urea ammonium nitrate.

In terms of cost differences between urea and manure, Arnold notes that farmers have to eventually land-apply the manure regardless of whether it’s applied to a growing crop or not.

“Capturing the nitrogen value pays for the cost of applying the manure,” he says.

He also believes a drag hose is faster, more efficient and alleviates soil compaction concerns compared to using a manure tanker. Drag hoses also provide flexibility in that the manure can be applied anytime from the day the crop is planted through the V3 stage of corn growth, a six-week window in Ohio if the corn is planted in late April.

In these experiments on application of manure during the growing season, Arnold and his colleagues never measured phosphorus runoff, but he says that if manure is applied in the fall, more than 50 percent of the nitrogen is generally lost, and the tillage to incorporate the manure at that time causes more soil erosion than application during crop growth.

Farmers do have to watch over-application of manure to growing wheat as it will lead to the wheat field blowing flat in June in Ohio. On corn, Arnold says there is nothing to stop a person from over-applying but the extra nitrogen would be wasted.

All-in-all, Arnold believes the application of manure to growing crops works very well. He says the farmers who have participated in the on-farm plots have been pleasantly surprised at how well livestock manure has worked as a sidedress nitrogen source for corn and as a top dress to wheat.

“In addition to providing nitrogen for the corn crop, the manure can also provide the phosphorus and potash needed for a two-year corn-soybean rotation without applying excess nutrients,” he says.

In order to convince as many livestock producers as possible of the economic and environmental advantages of applying more manure to growing crops and applying less manure after the fall harvest season, Arnold and his team will allow farmers to see results first-hand. Because he’s found that farmers who participated in the sidedress plots using a manure tanker are very interested in using a drag hose, Arnold has obtained funds from several companies to build two 12-row drag hose sidedress toolbars. He expects to have them available for loan during the 2017 growing season.

“The plan is to loan the toolbars to both livestock producers and commercial applicators,” he says. “We hope to loan them out to more than a dozen participants this summer.”


Published in Applications
August 17, 2017, Fruitland, IA — All farmers know that crops need nutrients to grow, particularly carbon. That's why they spread manure or compost on their fields. But compost fades fast — half of its carbon degrades in five to eight years.

In recent years, biochar has been hailed by some as an alternative to manure or compost, but  biochar is expensive and poor quality biochar can increase the soil's acidity, damaging crops. READ MORE 
Published in Applications
July 28, 2017, Vancouver, B.C. - A spin-off company from the University of British Columbia is promising to make a crap job a good deal easier and cleaner, with a scalable waste-processing system.

Manure management practices on local dairy farms routinely raise a stink from their residential neighbours when the slurry is sprayed on fields, as well as from American farmers who complain of cross-border water pollution resulting from excess nutrient runoff.

Boost Environmental Systems, a new firm, is testing a system that uses microwave heat and hydrogen peroxide to drastically reduce the volume and the composition of manure and sewage solids. The resulting waste is easily digestible with existing systems and the liquid is a rich source of a commercially valuable fertilizer called struvite.

Demonstration-sized units are installed at the UBC Dairy Education Centre in Agassiz and the James Wastewater Treatment Plant in Abbotsford, according to Chief Technology Officer Asha Srinivasan, a post-doctoral fellow at UBC. A third pilot installation is being planned with Metro Vancouver. READ MORE 
Published in Profiles
July 12, 2017, Lethbridge, Alta. - Farmers know the importance of keeping the land, water and air healthy to sustain their farms from one generation to the next. They also know that a clean environment and a strong economy go hand-in-hand.

Minister of Veterans Affairs and Associate Minister of National Defence and Member of
Parliament (Calgary Centre) Kent Hehr today announced a $1.1 million investment with the
University of Lethbridge to study ways to reduce methane gas emissions in cattle.

This project with the University of Lethbridge is one of 20 new research projects supported by
the $27 million Agricultural Greenhouse Gases Program (AGGP), a partnership with
universities and conservation groups across Canada. The program supports research into
greenhouse gas mitigation practices and technologies that can be adopted on the farm.

"Reducing the amount of greenhouse gases produced by the cattle sector is important both
environmentally, economically and helps build public trust. Producers want to operate in a
sustainable fashion and our study results will help them do that," said Dr. Erasmus Okine, University of Lethbridge Vice-President (Research). 

The study led by the University of Lethbridge will investigate whether the use of biochar, a feed supplement, in beef cattle diets improves the efficiency of digestion and reduces the amount of methane gas produced.
Published in Business/Policy
June 29, 2017, Chatham, Ont. – The Thames River Phosphorus Reduction Collaborative is developing innovative tools, practices and technologies to help farmers and municipalities reduce phosphorus and algal blooms in the southwestern Ontario watershed which feeds into Lake Erie. The project was officially launched at a press conference this week.

"We're determined to improve the quality of water in the Thames, and that means working with everyone from farmers to drainage engineers and conservation authorities to First Nations and universities to come up with practical, cost-effective water management and drainage solutions for both urban and agricultural areas," said Randy Hope, Mayor of Chatham-Kent and the project's co-chair.

Elevated levels of phosphorus in water that runs off agricultural fields and collects in municipal drains can trigger the growth of toxic algal blooms in downstream water bodies. The western basin of Lake Erie has experienced several such incidents in recent years, disrupting the ecosystem, causing the closure of beaches and even, in Toledo, Ohio a ban on city drinking water for two days. Lake St. Clair, which is an indirect pathway to Lake Erie, has also been experiencing problems with near-shore algal blooms.

Among the initiatives aimed at resolving the problem is a commitment made in 2016 between Canada and the U.S. to a 40 per cent reduction in the total phosphorus entering Lake Erie. There is also a commitment among Ohio, Michigan and Ontario to reduce phosphorus by 40 per cent by 2025.

"We're doing research with the goal of creating a suite of tools and practices that farmers can use to address different situations," said Mark Reusser, Vice-President of the Ontario Federation of Agriculture (TBC). He added that the group has gathered research from around the world and is looking into how it could be applied locally.

Project partners are working to fulfill some of the recommendations made in the "Partnering in Phosphorus Control" Draft Action Plan for Lake Erie that the Canadian and Ontario governments released in March. The governments completed a public consultation in May and are expected to have a plan in place next year.

The project's new website is at www.thamesriverprc.com

The project is administered by the Ontario Federation of Agriculture and the Great Lakes and St. Lawrence Cities Initiative. It was funded in part through Growing Forward 2 (GF2), a federal-provincial-territorial initiative. The Agricultural Adaptation Council assists in the delivery of GF2 in Ontario.
Published in Profiles
Page 1 of 6

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

2018 World Pork Expo
Wed Jun 06, 2018 @ 8:00AM - 05:00PM
Anaerobic Digester Operator Training – Wisconsin
Tue Jun 19, 2018 @ 8:00AM - 05:00PM
2018 North American Manure Expo
Wed Aug 15, 2018 @ 8:00AM - 05:00PM
2018 Canada's Outdoor Farm Show
Tue Sep 11, 2018 @ 8:00AM - 05:00PM
Farm Science Review 2018
Tue Sep 18, 2018 @ 8:00AM - 05:00PM