Environment Research
Spring in America's heartland is often wet. That makes its soil too soft for planting. One solution to that issue is tile drainage. Growers insert a series of pipes (drain tiles) under their fields, which drains water from the soil into nearby streams and lakes.
Published in Other
Want to know more about your environmental footprint? Get additional information about operational costs? University of Minnesota Extension specialist, Erin Cortus and extension educators, Diane DeWitte, Jason Ertl, and Sarah Schieck are looking to work with producers in confidentially assessing their own operations using The Pig Production Environmental Footprint Calculator - a tool developed with support from and maintained by the National Pork Board.
Published in Swine
Add just enough fertilizer, and crops thrive. Add too much, and you may end up with contaminated surface and groundwater.

Excess nutrients from farms can be transported to groundwater reservoirs by water starting at the surface and flowing through soil. But the flow of water through soil is a "highly dynamic process," says Genevieve Ali, a researcher at the University of Manitoba. "It can vary from year to year, season to season, or even rainstorm to rainstorm."

It can also fluctuate depending on soil type and even if organic additions, like manure, are applied.

Ali is lead author of a new study that shows water infiltrates deeper into cracking clay (vertisolic soils) when liquid hog manure is applied.

The study also showed that even though water infiltration went deeper in the presence of manure, it did not reach depths of 39 inches (100 cm). That's how deep tile drains–designed to remove excess subsurface water–are typically installed in the study region.

"This observation challenges previous studies, which showed that cracks in clay soils can promote the travel of water and associated contaminants from the soil surface into tile drains," says Ali. "Our study suggests that not all clay-rich soils behave the same."

The researchers focused on vertisols because they are present in large regions of North America. "They are common in agricultural plains, where excess nutrients may be common due to intensive farming," Ali says.

But knowledge gaps remain about soil water flow in vertisols, especially with organic additions.

Water can flow through soil in different ways. 'Matrix flow' occurs when water moves slowly through tiny spaces between soil grains. 'Preferential flow' takes place when water travels relatively quickly through bigger channels, called macropores, such as cracks and earthworm burrows.

"Imagine a bucket of sand with plastic straws inserted throughout," says Ali. "If you dumped water on this sand bucket, the water traveling through the straws would reach the bottom first."

Similarly, preferential water flow through soil macropores can carry contaminants quickly from the surface down to groundwater reservoirs.

Macropores are often connected to one another. "They act like a network of pipes, and they can be created or exacerbated by human activities," says Ali. "Knowing when and where there is preferential flow and how to manage land in those areas is critical to preserving groundwater quality."

Clay-rich soils--such as vertisols–tend to crack, which creates macropores. "That makes these soils natural candidates to study the relative importance of matrix and preferential flow," says Ali.

This study was conducted in research plots in Manitoba, Canada. Researchers added liquid hog manure to one plot but not the other. They sprinkled water mixed with blue dye on both plots to determine how water moved through the soil.

In the plot where manure was applied, water reached up to 25 inches (64 cm) into the soil. In contrast, water reached up to 18 inches (45 cm) in the plot where manure was not applied. Both plots showed evidence of matrix and preferential water flow.

The researchers also found that the water moving through the macropores was not completely separated from the rest of the soil.

"If you think back to the analogy of the sand bucket with the straws in it, the straws have a bunch of small little holes in them," says Ali. "Water can be exchanged laterally between the macropores and the surrounding soil."

Lateral exchange has been reported frequently for smaller macropores in forested soils, says Ali. "But it is less common in agricultural soils where cracks tend to be larger."

This study focused on a single site, so Ali says that further research is needed before generalizations can be made.

Ali is also studying the role of soil cracks in spring (created by the soil freezing and thawing multiple times) versus the role of cracks in summer (created when soils become especially dry).

Read more about this research in Agricultural and Environmental Letters. The research was done under the umbrella of the Watershed Systems Research Program and funded by the Government of Manitoba, as well as a Natural Sciences and Engineering Research Council Discovery Grant awarded to Genevieve Ali.
Published in Research
Ames, IA – An Iowa State University professor of agricultural and biosystems engineering has been named the new director of the Iowa Nutrient Research Center.

Matt Helmers, a professor in the Department of Agricultural and Biosystems Engineering and extension agricultural engineer, began his duties on Sept. 1. Helmers succeeds Hongwei Xin, assistant dean of research for the College of Agriculture and Life Sciences and a professor of agricultural and biosystems engineering, who served as interim director since 2017.

Helmers joined Iowa State in 2003. He serves as the agricultural and biosystems engineering department’s associate chair for research and extension and holds the title of Dean’s Professor in the College of Agriculture and Life Sciences.

“Dr. Helmers is well-known among Iowa farmers and water quality researchers as an exceptional scientist and a trusted source of information about nutrient management,” said Joe Colletti, interim endowed dean of the College of Agriculture and Life Sciences. “His leadership of the Iowa Nutrient Research Center is a significant new chapter in addressing the goals set forth in the Iowa Nutrient Reduction Strategy.”

Helmers was part of the scientific team that worked on the strategy’s Nonpoint Source Science Assessment, serving as its nitrogen team chair. He served on the Environmental Protection Agency’s Science Advisory Board Agricultural Science Committee from 2016 to 2018.

The Iowa Nutrient Research Center has committed $8.7 million to 76 research projects since it was created in 2013 by the Iowa Board of Regents in response to legislation passed by the Iowa Legislature. The center funds research by scientists at Iowa State, the University of Iowa and the University of Northern Iowa to address nitrogen and phosphorus nutrient losses to surface waters. They pursue science-based approaches to areas that include evaluating the performance of current and emerging nutrient management practices and providing recommendations on implementing the practices and developing new practices.

Helmers is involved in research and extension and outreach activities in the areas of water management and water quality. One focus area is subsurface drainage and the impacts of agricultural management on nutrient export from subsurface drained lands. Another focus is surface runoff from agricultural areas, including the strategic placement and design of buffer systems focusing on how buffer systems can be used to minimize environmental impacts.

He is faculty adviser to the Iowa Learning Farms, a partnership of farmers, non-farmers, urban residents, educators, agencies and conservationists to promote a renewed commitment to a Culture of Conservation. This year he was presented the Outstanding Achievement in Extension Award by the Iowa State College of Agricultural and Life Sciences and received its Dean Lee R. Kolmer Award for Excellence in Applied Research in 2017.

Helmers earned a bachelor’s degree in civil engineering from Iowa State in 1995; a master’s degree in civil engineering in 1997 from Virginia Polytechnic Institute and State University; and a doctorate in agricultural and biological systems engineering from the University of Nebraska-Lincoln in 2003.
Published in Research
Greenhouse gas is a significant player in climate change and Agricultural and Agri-Food Canada (AAFC) scientists have developed a tool that helps mitigate agriculture's contribution.

Dr. Roland Kroebel is an AAFC ecosystem modeller in Lethbridge, Alberta. Though he insists the credit is not his, Kroebel has played a key role in developing the Holos software model from the beginning to its current 3rd version. Holos helps producers green their agriculture operations by monitoring, and adjusting farming practices to lessen greenhouse gases.

"The idea of the model is to allow producers to play around with their management strategies and to see how that could lead to a reduction of greenhouse gas emissions," Kroebel says.

Kroebel says Holos is "an exploratory tool" and that "it's meant as a gaming approach where a producer can try out different management practices that don't necessarily have to be realistic."

The goal of the model is to gain understanding of the way the system reacts to management practices and is considered more of an educational tool than a decision maker.

The Holos 3.0 came out in 2017. The updated version includes a partial economics component allowing farmers to monitor costs of different management practices.

Kroebel says that the model is still in a basic level of complexity and his team will continue working on improvements as they receive feedback from other research groups and stakeholders.

One upgrade they're looking to make is to better match the economics of the model with the greenhouse gas emissions.

"To give you an example, different ways of disposing of animal manure have different costs and emit different types and amounts of gas; but those costs don't factor into the value of an animal. So the costs don't discriminate in that way, but emissions do."

Kroebel says they're also in frequent contact with the national greenhouse gas inventory (responsible for compiling and reporting data on Canadian greenhouse gas emissions across sectors) to ensure their algorithms are aligned.

"What we're trying to do there is create transparent results so that individual producers can understand how their farm system is part of the larger national and global context."

On top of the producers who use Holos for their farms, Kroebel says that they are increasingly receiving requests from universities looking to bring the software into classrooms.

"It's a great way to demonstrate how decisions on the farm trickle through the system and have multiple effects at various stages."

Published in Other
Nitrogen pollution flowing out of Iowa to the Gulf of Mexico has grown by close to 50 percent over nearly two decades, a new report shows, despite hundreds of millions of dollars spent to stem nutrients entering the state's waterways.

A University of Iowa study shows the state's contribution to the Gulf dead zone spiked 47 percent to 618 million pounds in 2016, based on five-year running annual averages. | READ MORE
Published in News
A Vancouver college is looking for new ways to manage manure in British Columbia's Fraser Valley.

Working with Muddy River Technologies of Delta, B.C., researchers at Langara College are seeking a cost effective way to prevent soil degradation and water contamination by removing phosphorus, nitrogen and other byproducts from animal manure.

The Fraser Valley is home to about 500 dairies, and the high amounts of slurry cause environmental and economic problems. Farmers do not have enough land to dispose of it, and they cannot expand because of the limitations placed on them by excess manure, said Langara researcher Kelly Sveinson.

This spring the college received $90,000 from the B.C. Innovation Council Ignite Award to support the project involving Sveinson, chemist Todd Stuckless and Rob Stephenson, chief technical officer of Muddy River Technologies, which works on water and waste treatments.

The project involves removing phosphates from manure using an electrochemical process similar to that used in environmental cleanups. The second step is to use a biochar carbon filter to capture ammonia that can be released as nitrogen. Ultimately those products could go back on the land as fertilizer. | READ MORE
Published in News
Kewaunee County, WI - Whether it is soil erosion or water quality that is burning you up inside. Identifying the county's greatest environmental concerns and how to fix them. Might hang on a few mouse clicks.

Kewaunee County's Land and Water Conservation Department is turning to an online questionnaire for the first time, and it needs your help. Options like increased animal waste management stand a chance at being popular picks. And that is because they can influence more than one category. | READ MORE
Published in News
On June 6, 2018, the Center for Limnology reported that a toxic algae bloom had begun to spread across Lake Mendota. It quickly led to the closure of beaches around Madison's largest lake.

It also coincided with the launch of a new, four-year effort by Dane County, called Suck the Muck, designed to literally suck a century's-worth of phosphorus from 33-miles of streams that feed the county's lakes.

Phosphorus, a nutrient found in the manure applied to agricultural fields, makes its way to Wisconsin waters (and waterways elsewhere) in runoff following rain storms. When the weather is warm, it can lead to the foul-smelling water and toxic algae blooms that plague lakes like Mendota, which is situated in an agricultural landscape.

This runoff may be getting worse, according to a recent study from researchers with the Water Sustainability and Climate Project at the University of Wisconsin–Madison. With a changing climate, the frequency of high-intensity rain events is on the rise. These storms bring heavy rains over a short period of time and exacerbate phosphorus runoff from manure-covered agricultural fields, more so than scientists expected.

"Both things are bad for water quality – too much manure is bad and too many intense storms are bad, too," says lead author of the study in Environmental Research Letters, Melissa Motew. "This is a story about how one problem really compounds another problem."

Indeed, the Lake Mendota algal bloom came on the heels of the second-wettest May in Madison's recorded history, and its eighth warmest. The National Weather Service reported that May 2018 was the wettest on record for the contiguous United States.

But Motew didn't start out asking how heavy storms and manure interact synergistically to affect water quality. It was while studying legacy phosphorus in soils ­– the accumulation of the nutrient over time – that she and the research team noticed something interesting in the data.

"We knew that heavy rain transports a lot of phosphorus off of a field and in 2014, (co-author Stephen Carpenter, emeritus professor and director of CFL) found that a relatively small number of rain events each year were delivering the majority of phosphorus to the lakes," she explains. "We happened to notice that it seemed like when we had periods of heavy rainfall we were seeing worse water quality than we expected. It prompted us to set up this study."

Climate change is bringing more intense rainfall across the U.S., particularly in the Midwest and Northeast. The 2014 study from Carpenter and colleagues showed that 74 percent of the phosphorus load in Lake Mendota is now delivered across just 29 days each year, and a 2016 study from scientists at Marylhurst University in Oregon and UW–Madison showed that annual precipitation in the Yahara watershed, which includes Lake Mendota, increased by 2.1 mm each year between 1930 and 2010.

This amounts to an increase of about seven inches of additional rain today, Motew explains. That same study also showed that while the frequency of large storm events in the region averaged 9.5 events per decade between 1930 and 1990, between 1991 and 2010, the number of large storm events nearly doubled, reaching 18 events per decade.

Using simulation models, Motew and the study team asked how more extreme rain events might interact with manure-and-fertilizer phosphorus supply on croplands to affect runoff at the level of an individual lake and the streams that feed it. That is, what happens when a given amount of rain falls on a field over the course of two hours instead of 24 hours?

"The model lets us scale up and make interesting observations from the scale of one field to the entire watershed," she says. "Models let us home in and study the process of how phosphorus moves in great detail."

Using two 60-year climate scenarios, one which assumed daily precipitation, maximum and minimum temperatures, wind speeds, relative humidity and solar radiation similar to current mean annual values in Madison, and another assuming more extreme rain events, Motew's model explored what happens to phosphorus concentrations in Lake Mendota and its tributary streams under low- and high-intensity precipitation conditions.

It took into account the real-life practices of farmers in the watershed – including their typical fertilizer and manure applications and tillage practices, the amount of phosphorus already stored in the surface layers of the soil, and the composition of the land around Lake Mendota. More than half of the land surrounding it is agricultural.

Motew found that dissolved phosphorus – the kind found in manure, as compared to other fertilizers and that found in soil – combined synergistically with heavy rain events to increase the amount of phosphorus running off into Lake Mendota and its streams.

"This puts us at even greater risk of worsening water quality," says Christopher Kucharik, study co-author and Motew's former graduate advisor. "This result also has wide-reaching implications because the synergistic relationship will likely be present in many agricultural watersheds around the world, where livestock and surface water co-exist."

Phosphorus is a critical nutrient for living organisms like crops. But what it does on land, it also does in water: encourages growth of organisms like plants and algae. When they die, these organisms fall to the bottom of an affected waterway, decomposing and consuming oxygen. This kills wildlife and encourages the growth of cyanobacteria, the organism behind toxic algae blooms. In some parts of the country, it can lead to dead zones, like in the Gulf of Mexico.

Farmers in Dane County and elsewhere are already applying less manure and doing so more precisely, Motew says, and she is hopeful these strategies will help to reduce phosphorus runoff from their croplands.

Motew, who is now a research fellow at The Nature Conservancy, also thinks farmers should be a part of continuing efforts to improve water quality. "We need to partner more with farmers so we can not only improve our own research by using better data, but so we can work together and build on their ideas, too." she says. "They know the problems up-close-and-personal and can provide insights we haven't considered. We as scientists can help explore where those insights may lead."

Motew adds: "Farmers are key to solving the problem, even though they are frequently blamed. We all need to take responsibility for our food system and find ways to support farmers in better manure management."

The study was supported by the National Science Foundation (grant numbers DEB-1038759 and DEB-1440297).
Published in Other
Auburn University's College of Agriculture, in conjunction with other schools around the nation, will conduct a study to ensure that poultry litter does not pollute surface waters with excessive amounts of phosphorous.

The three-year study is being performed to combat the 1.8 million tons of waste produced annually in Alabama from its $15 billion poultry industry.

Phosphorous-rich poultry litter is a big concern in Alabama and other states where the litter is used to fertilize fields. If the nutrient leaks into waterways, it can cause toxic algae blooms which can lead to deficient oxygen levels and destruction of life in the water.

The study will look at the Sand Mountain region of North Alabama and a row-crop field in Wisconsin, two large agro-ecosystems that are currently having issues with managing their phosphorous levels. | For the full story, CLICK HERE
Published in Poultry
Dane County Executive Parisi has announced Dane County will be partnering with the area's family farmers to accelerate lakes clean-up efforts by commissioning a study to recommend where treatment technology can most effectively be located to treat more manure.

The county is looking for proposals and bids from private partners to evaluate where additional digesters or other types of large scale treatment systems could be placed to reduce run-off.| READ MORE
Published in News
Each year, farmers in the U.S. purchase tens of millions of pounds of antibiotics that are approved for use in cows, pigs, fowl and other livestock.

When farmers repurpose the animals' manure as fertilizer or bedding, traces of the medicines leach into the environment, raising concerns that agriculture may be contributing to the rise of antibiotic-resistant bacteria.

New research holds troublesome insights with regard to the scope of this problem.

According to a pair of new studies led by Diana Aga, PhD, Henry M. Woodburn Professor of Chemistry in the University at Buffalo College of Arts and Sciences, two of the most elite waste treatment systems available today on farms do not fully remove antibiotics from manure.

Both technologies — advanced anaerobic digestion and reverse osmosis filtration — leave behind concerning levels of antibiotic residues, which can include both the drugs themselves and molecules that the drugs break down into.

In addition, the study uncovered new findings about solid excrement, which is often filtered out from raw, wet manure before the treatment technologies are implemented.

Researchers found that this solid matter may contain higher concentrations of antibiotics than unprocessed manure, a discovery that is particularly disturbing because this material is often released into the environment when it's used as animal bedding or sold as fertilizer.

"We were hoping that these advanced treatment technologies could remove antibiotics. As it turns out, they were not as effective as we thought they could be," Aga says.

She does offer some hope, however: "On the positive side, I think that a multistep process that also includes composting at the end of the system could significantly reduce the levels of antibiotics. Our earlier studies on poultry litter demonstrated that up to 70 percent reduction in antibiotics called ionophores can be achieved after 150 days of composting. Testing this hypothesis on dairy farm manure is the next phase of our project, and we are seeing some positive results."

The research on reverse osmosis filtration was published online in January in the journal Chemosphere. The study on advanced anaerobic digestion — a collaboration between UB and Virginia Tech — appeared online in March in the journal Environmental Pollution.

Waste treatment systems are not designed to remove antibiotics

According to the U.S. Food and Drug Administration, more than 30 million pounds of antibiotics approved for use in food-producing livestock were sold or distributed in the United States in 2016. And these are just a fraction of the total antibiotics used annually around the world in humans and animals.

Though the new research focuses on dairy farms, the findings point to a larger problem.

"Neither of the treatment systems we studied was designed to remove antibiotics from waste as the primary goal," Aga says. "Advanced anaerobic digestion is used to reduce odors and produce biogas, and reverse osmosis is used to recycle water. They were not meant to address removal of antibiotic compounds.

"This problem is not limited to agriculture: Waste treatment systems today, including those designed to handle municipal wastewater, hospital wastes and even waste from antibiotic manufacturing industries, do not have treatment of antibiotics in mind. This is an extremely important global issue because the rise of antibiotic resistance in the environment is unprecedented. We need to start thinking about this if we want to prevent the continued spread of resistance in the environment."

Aga is a proponent of the "One Health" approach to fighting antimicrobial resistance, which encourages experts working in hospitals, agriculture and other sectors related to both human and animal health to work together, as humans and animals are often treated with the same or similar antibiotics.

Aga was an invited presenter at an international forum last week on the latest research about antimicrobial resistance. The event, in Vancouver, Canada, was co-chaired by representatives of the UK Science and Innovation Network, Wellcome Trust and U.S. Centers for Disease Control and Prevention.

To conduct the research, scientists visited two dairy farms in Upstate New York.

Both facilities extract much of the solid matter from cow manure before subjecting the remaining sludge to high-tech waste management techniques. To process the remaining goop, one farm uses advanced anaerobic digestion, which employs microorganisms and pasteurization to break down and convert organic matter into products that include biogas, while the other farm uses reverse osmosis, which passes the slurry through a series of membranes to purify water.

Both technologies reduced antibiotic residues in liquid manure, but did little to cut down levels in the remaining solid matter. This is particularly worrisome as the research also revealed that antibiotic compounds tend to migrate from the liquid parts of the manure into the solids during treatment, making it arguably more important to treat than the latter.

The concern over solid excrement is heightened by the fact that the treatment techniques are implemented only after most solids are already separated from the raw manure, meaning that the bulk of the solid matter may go untreated.

Some key findings from each study:

The research on advanced anaerobic digestion examined a popular class of antibiotics called tetracyclines, finding that these drugs and their breakdown products migrated from the fluid part of the sludge into the solid part during treatment. At the end of the process, the solids contained higher levels of tetracycline antibiotics than the original raw manure. The study also found that both the liquid and solid parts of the sludge contained genes that confer resistance to these antibiotics.

The study on reverse osmosis looked at how well this water purification technique removed synthetic antimicrobials called ionophores, which are used to promote growth in dairy cows and to treat coccidiosis, a costly, parasitic disease in the cattle industry that affects mostly young calves.

The research found that reverse osmosis effectively filtered ionophores from the liquid portion of manure. However, low levels of the drugs persisted in "purified" water after treatment due to the deterioration of membranes used in the filtration process. Also, solid matter extracted from the water during reverse osmosis still harbored high levels of ionophores. Finally, the study found that prior to treatment, many of the ionophores appear to have already migrated into the solid part of the raw manure that is removed before the reverse osmosis even begins.

"Both of the systems we studied are a good first step in reducing the spread of antibiotics and potentially reduce resistance in the environment, but our study shows that more must be done," Aga says. "We need to look at different waste management practices that, maybe in combination, could reduce the spread of antibiotic compounds and resistance in the environment."

Aga points to composting as one area to explore. Her team is studying how advanced anaerobic digestion can be used in conjunction with composting of solid materials to remove antibiotics and their breakdown products from manure. The preliminary results of the research, not yet published, are promising, Aga says.
Published in News
Wisconsin - Last spring, University of Wisconsin–Madison researcher Michel Wattiaux began using a specialized device to measure the methane being exhaled or belched by a group of Holsteins and Jerseys.

It was the first step in an ongoing study by dairy scientists, engineers and agronomists to see how a cow's breed and forage consumption affect the greenhouse gases generated by her gut and her manure.

The U.S. dairy industry has set a goal of reducing its greenhouse gas emissions by 25 percent by the year 2020, and UW–Madison researchers are helping identify strategies to accomplish that. | For the full story, CLICK HERE.
Published in News
A ditch containing woodchips may look unassuming—but with a name like bioreactor it's guaranteed to be up to more than you think.

Bioreactors, which are woodchip-filled ditches and trenches, are often used near crop fields to filter the water running off of them. The woodchips enhance a natural process called denitrification that prevents too much nitrogen from getting into other bodies of water like rivers and streams.

"This process is a natural part of the nitrogen cycle that is done by bacteria in soil all around the world," explains Laura Christianson. Christianson is an assistant professor at the University of Illinois. "In a bioreactor, we give these natural bacteria extra food—the carbon in the woodchips—to do their job. These bacteria clean the nitrate from the water."

Because it is the bacteria that do this water-cleaning process, it's called a biological process, hence the name bioreactor. By giving them extra food (the woodchips have much more carbon than the surrounding soil), they are "super-powering" this natural process.

"Nitrate in ag drainage is often 100 percent pinned on fertilizer, but it's actually much more complicated," Christianson adds. "In short, nitrate in drainage comes from both fertilizer and manure applications and also importantly from natural nitrogen that exists in the soil."

Christianson studies how well different types of bioreactors take nitrogen out of the water. Her team's work has shown they are effective in the Midwest. Next, they wanted to test them in the Mid-Atlantic region, particularly the Chesapeake Bay watershed.

"Bioreactors are a farmer-friendly practice that has gotten a lot of interest in the Midwest, and so it made sense to see if bioreactors could also work for ag ditch drainage in the Mid-Atlantic," she says. "Why did we need to retest them? The key scientific question had to do with the different environment. Differences in the landscape between the Midwest and Mid-Atlantic regions required further testing."

The researchers tested three different kinds of bioreactors in the Chesapeake Bay area. They all treated water that was either headed to a drainage ditch or already flowing through a drainage ditch.

One was a bioreactor placed in a ditch. Another was a bioreactor next to a ditch. The last type was a sawdust wall that treated groundwater flowing very slowly under the ground to the ditch.

The group's findings showed that all three types worked in reducing the amount of nitrogen headed from the field into nearby water.

This is good news for watersheds. Too much nitrogen throws off the balance of nitrogen in bodies of water and can set off a process that results in the death of the water's plants and fish. For this current research, the goal was to limit the nitrogen getting from the Mid-Atlantic into the Chesapeake Bay.

The next step in this research, Christianson says, is to further test bioreactors in this area and others so they are better constructed and more effective.

"This is a relatively easy idea that cleans up water without taking much of farmers' time or land," she says. "We need practical solutions like this so farmers can continue to produce food and fiber, while also protecting natural resources. I like that it's a natural process; we're just enhancing it. There's a nice simplicity to it."

Learn more about this work in Agricultural & Environmental Letters. Christianson's research is also highlighted at https://www.agronomy.org/about-agronomy/at-work/laura-christianson. The research was funded by the USDA Natural Resources Conservation Service Conservation Innovation Grant.
Published in News
Beef and dairy farmers around the world are looking for ways to reduce methane emissions from their herds to reduce greenhouse gas emissions – a global priority. To help meet this goal, researchers from Canada and Australia teamed-up for a comprehensive three-year study to find the best feeding practices that reduce methane emissions while still supporting profitable dairy and beef cattle production.

"We need to know how feed affects methane production, but we also need to know how it affects other aspects of the farm operation, like daily gains in animals, milk production, and feed efficiency. Farmers want to help the environment, and they need to know what the trade-offs will be, which is why we took a holistic approach looking at the overall impacts," explains Dr. Karen Beauchemin, beef researcher from Agriculture and Agri-Food Canada (AAFC).

Researchers and farm system modellers from Agriculture and Agri-Food Canada, Agriculture Victoria (Australia), and the University of Melbourne, worked together to examine three feed supplements.

Methane inhibitor supplement 3-nitrooxypropanol (3NOP) could reduce costs and increase profits

3NOP is a promising commercial feed supplement that can be given to cattle to inhibit the enzyme methyl coenzyme M reductase – an enzyme responsible for creating methane in the animal's rumen (first stomach). After blocking the enzyme, 3NOP quickly breaks down in the animal's rumen to simple compounds that are already present in nature.

AAFC's Dr. Beauchemin studied the short- and long-term impacts of feeding 3NOP to beef cattle and shared her findings within the broader study.

"We now have clear evidence that 3NOP can have a long-term positive effect on reducing methane emissions and improving animal performance. We saw a 30-50% reduction in methane over a long period of time and a 3-5% improvement in feed efficiency," Beauchemin says.

Producing milk, gaining weight, and creating methane all take energy that a cow fuels by eating. Cattle eating a diet that contained the 3NOP supplement produced less methane. And, because there was less methane more energy could be used by the animal for growth. When using this supplement, cattle consumed less feed to gain a pound of body weight compared to control animals.

"What is also great is that the inhibitor worked just as effectively no matter what type of feed the cattle were eating," Beauchemin explains. "We don't know the actual market price of the supplement yet because it is still going through approvals for registration in Canada and the U.S. That will be important for farmers who want to calculate the cost-benefit of using 3NOP to reduce methane emissions from their cows and enhance profits."

The Story of Nitrate
Microorganisms in the cattle's rumen need nitrogen to be able to efficiently break down food for the animal to absorb. Nitrate is a form of non-protein nitrogen similar to that found in urea, a compound used in cattle diets. When nitrate is fed to cattle, it is converted to ammonia which is then used by the micro-organisms. During this process, nitrogen in the nitrate works like a powerful magnet that is able to hold onto and attract hydrogen. This leaves less hydrogen available in the rumen to attach to carbon to make methane, thus reducing the amount of methane produced.

Researchers in Canada found that adding nitrate to the diet of beef cattle reduces methane production by 20 percent in the short-term (up to three weeks), and after 16 weeks it still reduced methane up to 12 percent. In addition, feeding nitrate improved the gain-to-feed ratio. However, administering the correct dosage is extremely important, as too much nitrate can make an animal ill. So it is recommended this method should be used with care and caution.

Dr. Richard Eckard, a researcher from the University of Melbourne explained "I understand that in Canada, most forages are not that low in protein. But in the rangelands of northern Australia, the protein content in the forage is extremely low. It is possible that adding nitrate to Australian cattle feed may be able to improve the feeding regime from the current use of urea, but it depends on the price."

To supplement or not supplement with wheat, corn, or barley?

In the short term, wheat effectively reduced methane production by 35 percent compared with corn or barley grain; but, over time cattle were able to adapt to the change in feed and the methane inhibitory effect disappeared. Essentially, after 10 weeks, methane production was the same for corn, barley, and wheat.

The study also showed genetic variation in cows where about 50 percent of the cows that were fed wheat remained low in their methane emissions, even for as long as 16 weeks. However, the other cows adapted to the wheat diet and had methane emissions similar to, or even greater than those fed diets containing either corn or barley. Based on genetics, some cows are more adaptable than others and, in the long-term, it is more difficult to reduce the amount of methane they produce.

For dairy cows, Dr. Peter Moate, Dairy Researcher with Agriculture Victoria, was particularly intrigued about the link between milk fat, yield and methane emissions.

"We found that feeding cows wheat increased milk yield but fat levels decreased. For the farmer, it really depends on what they want to achieve in order to say whether this makes sense economically," explained Moate. "Overall, feeding wheat didn't have the long-term ability to reduce methane emissions, so it really couldn't be recommended as a best practice to achieve this type of goal."

Lessons learned
"Our better understanding of feeding regimes will make a difference for farmers, but more importantly this research has really helped us understand more precisely the volume of greenhouse gases (GHGs) the industry is producing under different feed regimes. This is powerful information for policy makers," stated Beauchemin.

This is particularly true for countries that have implemented or are thinking about putting a price on carbon or a carbon trading scheme in place to reduce GHG emissions.

"By adopting different farming methods to reduce GHGs, farmers may be able to sell these "carbon credits" for revenue. But the key is to prove that these farming methods work and warrant being officially recognized for carbon credits. This work is one step closer in this process" explains Beauchemin.

While this project has wrapped-up, the work has not ended. Researchers in both countries unanimously agree that they will continue to help farmers and the industry find solutions to reducing their carbon footprint.
Published in Beef
There's a farm in Arkansas growing soybeans, corn, and rice that is aiming to be the most scientifically advanced farm in the world. Soil samples are run through powerful machines to have their microbes genetically sequenced, drones are flying overhead taking hyperspectral images of the crops, and soon supercomputers will be crunching the massive volumes of data collected.

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), working with the University of Arkansas and Glennoe Farms, hope this project, which brings together molecular biology, biogeochemistry, environmental sensing technologies, and machine learning, will revolutionize agriculture and create sustainable farming practices that benefit both the environment and farms.

If successful, they envision being able to reduce the need for chemical fertilizers and enhance soil carbon uptake, thus improving the long-term viability of the land, while at the same time increasing crop yields. For the full story, CLICK HERE.
Published in News
Arlington, Virginia - Frank Mitloehner, PhD, will debunk myths about animal agriculture's environmental impact at the Animal Agriculture Alliance's 2018 Stakeholders Summit, set for May 3-4, at the Renaissance Capital View Hotel in Arlington, Va.

Mitloehner is a professor and extension air quality specialist in the Department of Animal Science at the University of California, Davis. He is an expert on agricultural air quality, livestock housing and husbandry. Overall, he conducts research that is directly relevant to understanding and mitigating of air emissions from livestock operations, as well as the implications of these emissions for the health and safety of farm workers and neighboring communities.

"There is a lot of misinformation about how much animal agriculture actually contributes to the nation's greenhouse gas emissions and overall environmental impact," said Kay Johnson Smith, Alliance president and CEO. "With the industry's commitment to continuous improvement, Summit attendees will find Mitloehner's research enlightening and refreshing."

The Alliance also announced that the Summit has been approved for eight continuing education credits by the American Registry of Professional Animal Scientists. ARPAS members in attendance can request credit using www.arpas.org or by contacting Cornicha Henderson at This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

To register, visit http://animalagalliance.org/summit. Be sure to check the Summit website for the most up-to-date Summit information. You can also follow the hashtags #AAA18 and #ProtectYourRoots for periodic updates about the event. For general questions about the Summit please contact This e-mail address is being protected from spambots. You need JavaScript enabled to view it  or call (703) 562-5160.
Published in News
Assistant professor of environmental studies Cassie Gurbisz was among 14 co-authors of a new research article published this week in the Proceedings of the National Academy of Sciences.

The article reports the positive impact of long-term nutrient reductions on an important and valuable ecosystem in the Chesapeake Bay. Scientists indicate the resurgence of underwater grasses supports nutrient reductions from EPA's Total Maximum Daily Load (TMDL). This, along with conservation incentives, has resulted in a healthier Chesapeake Bay.

Jonathan Lefcheck, PhD, formerly of the Virginia Institute of Marine Science and now at the Bigelow Laboratory for Ocean Science, along with Gurbisz and 12 co-authors, shows that a 23 percent reduction of average nitrogen levels in the Bay and an eight percent reduction of average phosphorus levels have resulted in a four-fold increase in abundance of Submerged Aquatic Vegetation (SAV) in the Chesapeake Bay. This ecosystem recovery is an unprecedented event; based on the breadth of data available and a sophisticated data analysis, this is the biggest resurgence of underwater grasses ever recorded in the world.

The researchers employed advanced analytical tools to definitively show how the reduction of excess pollutants like nitrogen and phosphorus are the cause of this ecosystem recovery. To link land use and Chesapeake Bay status, researchers analyzed data in two different ways: one focusing on the cascade of nutrients from the land to the waterways, and one showing what happens to SAV once the nutrients are in the water.

Gurbisz said she participated in a series of workshops with scientists who study various aspects of SAV ecology. She said she helped develop the conceptual basis of the project and was excited that the work generated relevant results related to restoring the Chesapeake Bay.

The published findings are a collaborative effort between the following agencies: Virginia Institute of Marine Science, University of Maryland Center for Environmental Science, Environmental Protection Agency Chesapeake Bay Program, U.S. Geological Survey, National Socio-Environmental Synthesis Center, St. Mary's College of Maryland, Smithsonian Environmental Research Center, Maryland Department of Natural Resources, and Texas A&M University-Corpus Christi.

Published in News
Gibsonburg, Ohio - An agricultural scientist said farmers are contributing to the efforts to reduce the phosphorus runoff that leads to Lake Erie's harmful algal blooms, but cautioned that the battle must continue.

Mark Riehl, an agronomist with Sunrise Cooperative, spoke at the Sandusky County Chamber of Commerce's 2018 Ag Week Kickoff Breakfast on Friday at Ole Zim's Wagon Shed in Gibsonburg.

"The phosphorus cycle and how it occurs is rather complicated," Riehl said. "That's part of the reason why this isn't a quick-resolve issue." | READ MORE
Published in News
The same products that get rid of internal parasites in livestock may adversely impact the dung beetles that help break down dung, according to South Dakota State University assistant professor Lora Perkins of the Department of Natural Resource Management. That could be bad news for the dung beetles and livestock production.

Through a four-year U.S. Department of Agriculture grant, Perkins and three colleagues will examine how producers' use of products to control parasites, known as parasiticides, has changed and how that has impacted the dung beetle population, soil quality and forage production. The National Institute of Food and Agriculture funding is part of the Bioenergy, Natural Resources and Environment Program, which focuses on the environmental sustainability of rangeland livestock production.

"Dung beetles are little drivers of ecosystem function," Perkins said. "They turn a big pile of dung into nutrients in the soil that can be taken up again by plants." Previous SDSU research looked at the biodiversity of dung beetles and other insects that populate dung pats. "We're adding onto that research and moving it all the way through to forage production," she explained.

Perkins, assistant professor. A. Joshua Leffler and professor Paul J. Johnson, an entomologist, will examine areas at the Ft. Pierre National Grasslands which are used by different livestock producers. Some producers use parasiticides to control parasites; others don't. "By conducting our research at Ft. Pierre, we are able to study areas that are adjacent to one another so the environmental variation among study areas is minimal," Perkins explained.

The researchers will measure the dung beetle population and examine how rapidly the dung is incorporated into the soil. They will measure nitrogen in the soil and plant production by weighing the biomass.

"Nitrogen availability is a key factor limiting forage production, and dung beetles are key organism in making nitrogen available to plants," Leffler explained. One doctoral student will also work on this portion of the project, with fieldwork beginning this summer.

However, what makes this project unique is collaboration with assistant sociology professor Jessica Ulrich-Schad. She will survey approximately 2,500 livestock producers to see whether they use parasiticides to control parasites in their livestock or not, whether that has changed over time and why. She will also ask how the parasiticides they are using have changed and what led to those changes. "Jessica is a critical member of our team. She helps us bridge the gap between the technical analyses and landowners and managers" said Perkins.

"We want to understand the drivers behind the use of these products," said Ulrich-Schad, who began exploring producer decision-making as a postdoctoral researcher at Purdue University. "We must get a better grasp of how farmers are making these decisions to know how we can encourage them to voluntarily use practices that are good for soil and water quality."

Through the survey, she will examine producers' awareness of how these parasiticides can impact dung beetle population, soil quality and forage production, as well as the roles that social networks play in the practices they use and the awareness they have. One doctoral student will work with Ulrich-Schad. Preliminary interviews with seven producers she characterized as innovators revealed that some are noticing a decrease in the dung beetle populations.

"When dung piles accumulate, fields become 'fouled'—livestock won't eat by the pile," Perkins explained. "We need the beetles to help break down the dung and keep the nutrients flowing and the plants growing." Research at other universities also shows that the presence of dung beetles can reduce the survival of parasite larvae in the dung pats.
Published in Other
Page 1 of 6

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Dakota Farm Show
Thu Jan 03, 2019 @ 8:00am - 05:00pm
Banff Pork Seminar
Tue Jan 08, 2019
Iowa Pork Congress
Wed Jan 23, 2019 @ 8:00am - 05:00pm
Illinois Pork Expo
Tue Jan 29, 2019

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.