Agronomy
For decades, phosphorous has accumulated in Wisconsin soils. Though farmers have taken steps to reduce the quantity of the agricultural nutrient applied to and running off their fields, a new study from the University of Wisconsin-Madison reveals that a “legacy” of abundant soil phosphorus in the Yahara watershed of Southern Wisconsin has a large, direct and long-lasting impact on water quality.
Published in Dairy
People in the poultry industry have been on the fast-track to learning how to better deal with manure in the face of changing application rules and environmental concerns.
Published in Poultry
October 26, 2017, Oakland, MD – The University of Maryland Extension Office of Garrett County will partner with the Maryland Department of Agriculture and the Garrett Soil Conservation District to host three days of a free workshop and on-farm demonstrations on manure injection and nutrient management practices Nov. 7 to 9. The agenda will have participants traveling to Frostburg, Grantsville, Oakland, and Accident farms.

Participants do not need to attend all three days, and are only required to register for the first day of demos, as a free lunch will be provided to those attending. Those in need of it will also receive continuing education units from the Maryland Nutrient Management Program.

“Rising fertilizer costs require farmers to maximize the use of ‘free’ nutrients available in manure,” said a spokesperson. “Incorporating manure into the soil is an effective management strategy for keeping these valuable nutrients in the field.”

This program offers practical strategies for injecting manure into the soil to allow incorporation while maintaining a no-tillage management system. Farmers will have an opportunity to talk to custom applicators, discuss costs, and learn about cost-share programs for manure injection and manure transport.

The workshop will begin November 7 at Ganoe Farms, Frostburg, with registration, coffee, and doughnuts offered at 8:30 a.m. Demonstrations will be held from 9 to 11 a.m. at Ganoe’s. The group will then travel to Delvin, Dale, and Wayne Mast’s farm in Grantsville, where a complimentary lunch will be provided at 11:30 a.m. Guest speakers Joe Bartenfelder, Maryland Agriculture Secretary, and Norm Astle, Maryland Cost-Share Programs, will be heard until approximately 2 p.m. The day will continue at Robert Bender’s Accident farm from 2:30 to 4:30 p.m. with manure injection demonstrations. Those interested are asked to register no later than November 1 by calling the Garrett Soil Conservation District at 301-334-6951.

Additional farm demonstrations will take place on Nov. 8, beginning at Randall Steyer’s farm in Oakland, and followed by demos at Nevin’s Sines’ farm in Oakland and Kenton Bender’s farm in Accident. The last day, November 9, will also offer farm demonstrations only at David Yoder’s farm and two Grantsville dairy farms, which are yet to be determined.

Registration is not required for the November 8 and 9 farm demonstrations.
Published in Dairy
October 19, 2017, Columbus, OH – With warmer than normal weather forecast for the next couple of weeks, corn and soybean harvest in Ohio is expected to get back on track. Livestock producers and commercial manure applicators soon will be applying both liquid and solid manure as fields become available.

For poultry manure, handlers are reminded to stockpile poultry litter close to the fields actually receiving the manure. Stockpiles need to be 500 feet from a residence, 300 feet from a water source and 1,500 feet from a public water intake. Poultry litter cannot be stockpiled in a floodplain and cannot have offsite water running across the litter stockpile area. The site also cannot have a slope greater than six percent.

Litter stockpiles need to be monitored for insect activity and steps taken to keep insect populations in check if necessary. Farmers receiving poultry litter from a permitted facility need to have their fertilizer certification training completed. While field application rates of two to three tons per acre of poultry litter are common, farmers should still have soil tests and manure tests taken so manure nutrients being applied are fully utilized by the following crop rotations.

For liquid manure applicators, examine fields for tile blowouts, soil cracks, worm holes, and any other situations that might allow manure to reach surface waters. Old clay tile that are not charted, and may have an outlet buried in the bottom of a ditch, have caused a number of manure escapes in Ohio over the years. Recent manure escapes into ditches in northwest part of the state have caused fish kills and resulted in fines being levied. Farmers and applicators need to monitor field tiles for several days after application to be sure manure does not escape with the next rainfall event.

Liquid manure application rates are limited to the moisture holding capacity of the soil or no more than a half inch or ~13,500 gallons per acre for tiled fields. Limiting application rates below legal limits can help keep more nutrients on fields. Remember, a corn-soybean rotation will remove about 120 pounds of P2O5 over two good growing seasons. That will drop your soil test phosphorus level about 6 pounds per acre. Applying high amounts of manure can rapidly raise soil test levels and result in greater losses of phosphorus from farm fields.

Incorporated liquid manure or liquid manure incorporated within 24 hours does not have a setback requirement from ditches and streams this time of year. If just surface applied, with no plan of immediate incorruption, a vegetative setback of 35 feet is recommended or a 100 foot setback if there is little or no vegetation growing in the field. These recommendations for non-permitted farms and are the rules for permitted farms.

The Western Lake Erie Basin watershed rule for surface manure application is a weather forecast saying “not greater than a 50 percent chance of a half inch or more of rain in the next 24 hours. For very heavy soils (typically Hydrologic group D) 0.25 inch of rainfall can cause runoff when combined with a half inch of liquid applied on the surface. It’s advisable to print out the weather forecast when you start applying manure so you have the needed proof if an unexpected storm drenches the area.

The rain forecast does not apply to incorporated manure. However, the soil must be fractured and disturbed when manure is applied to qualify for incorporated. Just poking holes in the soil does not qualify as incorporation. Deep incorporation of manure nutrients could help break up the phosphorus stratification issues that may be contributing to the increasing levels of dissolved phosphorus leaving Ohio farm fields.

For permitted farms, when more than 50 pounds per acre of manure nitrogen is being applied, it’s required that a field have a growing crop or cover crop be planted. In manure amounts, this could be a little as 1,500 gallons per acre of swine finishing manure, one ton of poultry litter, 3,000 gallons of dairy manure, 1,000 gallons of liquid beef manure, or five tons per acre of solid pen pack manure.

All farmers should consider utilizing cover crops with manure applications to capture the available nitrogen and turn it into organic nitrogen in the form of additional roots and stems. Livestock producers in the Western Lake Erie Basin watersheds must have a growing cover crop in the field if they intend to apply manure to snow covered or frozen soil this winter. The cover crop should cover at least 90 percent of the soil surface.

Cover crops can help livestock farmers recapture manure nutrients and conserve soil by reducing erosion. The goal is to combine nutrient recovery and protecting the environment. With weather forecasters predicting above average temperatures the remainder of October, there is still time to establish good stands of cover crops.
Published in Other
October 17, 2017, Sun Prairie, WI – Dane County officials and local farmers recently announced a new initiative that will help farmers reduce manure runoff into the lakes, improve farm productivity and decrease climate change emissions.

As part of its 2018 budget, the Dane County Executive is allocating $200,000 to study the potential of creating a large-scale community facility where farmers could bring manure and have it composted. READ MORE
Published in Compost
October 12, 2017, Washington, DC – Voluntary conservation practices adopted by farmers in the Western Lake Erie basin are having positive impacts downstream, according to a new report from the U.S. Department of Agriculture (USDA).

The report – by USDA’s Conservation Effects Assessment Project (CEAP) – shows these practices reduce sediment losses from fields by an estimated 80 percent and reduce the amount of sediment being delivered to Lake Erie by an estimated 40 percent.

“One thing I know for certain – the benefits of conservation flow downstream,” said Leonard Jordan, acting chief of USDA’s Natural Resources Conservation Service (NRCS). “When hundreds of farms take action in one area, one watershed, it can make a world of difference. And our conservation planning and financial support provides producers a step-by-step plan to achieve those results.”

NRCS helps farmers make conservation improvements on working lands. Reports like this one help the agency better understand the effectiveness of conservation practices and how to adapt conservation approaches, Jordan said. Though there is still work to be done, this report shows that private landowners are responding to regional needs and putting conservation plans into action to improve water quality across the basin.

This is the second of a two-part report on the Western Lake Erie basin, which has historically suffered from high levels of nutrients and sediment associated with human activities in the region. The first report focused on edge-of-field losses, whereas this report focuses on sediment and nutrients entering streams, rivers and Lake Erie.

Relative to the scenario where no agricultural conservation practices were in place, the voluntary conservation practices in use by farmers in the basin in 2012:
  • Reduce phosphorus and nitrogen lost from cultivated cropland fields by 61 and 26 percent, respectively;
  • Reduce phosphorus and nitrogen deposition into the streams and rivers of the lake’s basin by 72 and 37 percent, respectively; and
  • Reduce phosphorus and nitrogen entering the lake by 41 and 17 percent, respectively.
Water quality is directly impacted by nutrients and sediment. By reducing the amount of nitrogen and phosphorus entering basin waterways, farmers are doing their part to reduce the chances of harmful algal blooms that may lead to hypoxia, or oxygen depletion, throughout the lake. Algal blooms can make the lake unsuitable as a source of drinking water and recreation as well as habitat for fish and wildlife.

CEAP uses a sampling and modeling technique to yield these results, quantifying the impacts of conservation practices adopted across the region. These analyses provide scientifically-based direction for future conservation planning efforts targeting specific management goals.

Farmers use a variety of conservation practices to reduce losses of nutrients and sediment. The practices evaluated by CEAP include strategies like nutrient management, cover crops and structural erosion control. Cutting-edge technologies that use GPS and variable rate applications are also assessed.

While many Western Lake Erie basin producers have worked independently to curb agricultural runoff into the Great Lakes system over the past 50 years, recent Farm Bill programs have accelerated conservation efforts on private lands located in targeted watersheds throughout the region. Coordinated and targeted efforts through the Western Lake Erie Basin Initiative, Great Lakes Restoration Initiative, National Water Quality Initiative and Regional Conservation Partnership Program provide additional funding and leverage partnerships in priority watersheds, including those that flow into the Western Lake Erie basin.

“Conservation applied on any acre delivers an environmental benefit, but when conservation efforts target the most vulnerable watersheds and lands, the results are even greater,” added Jordan. “We know it won’t solve the problem alone, but it’s a critical piece of the broader solution.”

The effectiveness of targeted conservation planning is also assessed in the report. These results and other CEAP assessments in the region provide another source for informing science-based conservation efforts within the basin. Upcoming assessments will continue to build upon this base.

Read the full report, titled Conservation Practice Adoption on Cultivated Cropland Acres: Effects on Instream Nutrient and Sediment Dynamics and Delivery in Western Lake Erie Basin, 2003-06 and 2012.
Published in Other
October 11, 2017, Madison, WI – A software program intended to cut water pollution and soil erosion has matured into an essential production tool for farmers, says a Fond du Lac County dairy farmer.

“I began using it in 2005 because I had to, I won’t lie,” Josh Hiemstar says in his barn office, as he gears up for the fall harvest on a 525-acre farm.

The software, called SnapPlus, was created at the University of Wisconsin department of soil science and introduced in 2005 under a state-federal mandate to reduce soil erosion and prevent runoff of nitrogen and phosphorus. These essential nutrients can over-fertilize lakes and streams, and feed the “dead zone” in the Gulf of Mexico.

“Now, I use it because it helps me make better business decisions, better environmental decisions,” says Hiemstra. “SnapPlus is a big deal for farmers.”

SnapPlus solves several problems at once, related to distributing manure and fertilizer efficiently while meeting guidelines for protecting groundwater and surface water,” says Laura Good, the soil scientist who has led development and testing. “The program helps to maintain crop fertility without wasting money or endangering natural resources.”

The program is used on 3.36 million acres, or about 37 percent of the state’s cropland, says Good.

The crux of SnapPlus calculates nutrient requirements for croplands and pastures. The phosphorus calculation starts with a soil test, adds phosphorus from planned fertilizer and manure applications, then subtracts phosphorus extracted by crops. The software also estimates field erosion and phosphorus runoff rates to streams and lakes.

The math may sound simple, says Good, but the real world is complex. Soils have varying structure, slope, and subsurface geology – all factors that affect whether nutrients like phosphorus and nitrogen stay where needed or become water pollutants.

Conditions can change from year to year, even within a field. Cropping sequences – called rotations – can be variable and complex.

And weather is, well, weather.

Fertilizer ranks near the top in farm expenses, but if some is necessary, more is not necessarily better. And so beyond enabling farmers to heed runoff standards, SnapPlus offers a means to optimize fertility and yields, and control costs.

Any farm in Wisconsin that applies nutrients and has benefited from government cost-sharing or receives the agricultural property tax credit must write a nutrient-management plan according to state-specific guidelines, which is typically done with SnapPlus.

“These standards and restrictions would be rather difficult to follow on paper,” Good observes.

Although SnapPlus is produced by the UW–Madison department of soil science, experts from UW Cooperative Extension have contributed nutrient recommendations and algorithms.

SnapPlus automatically taps databases on soil types, municipal well locations, and streams, lakes and shallow bedrock, so it “knows” factors conducive to rapid movement to groundwater, Good says.

“It tells you, on each field, what kind of soil you have, what kind of issues you have.”

Nutrient planning is often done by hired certified crop advisors, although many counties offer training courses to farmers who want to write their own plans.

With its triple benefit of avoiding pollution, supporting yields and reducing costs, SnapPlus “is a good use of taxpayer dollars,” Hiemstra says.

“You can call the county and get support, if they can’t answer, there is a full staff in Madison. The people who are writing the program are the ones telling you how to use it, and answering your questions.”

Agriculture may not get many headlines, but technology and economics are changing fast.

“Where we are now with the economics of agriculture,” Hiemstra says, “it’s even more important for farm operators to know their costs, and manage on their own. If you as a producer don’t take ownership of the information, you may be spending more than you need to spend.”
Published in Other
October 3, 2017 – In the past, livestock producers have inquired about applying liquid dairy or swine manure to newly planted wheat fields using a drag hose. The thought process is that the fields are firm (dry), there is very little rain in the nearby forecast, and the moisture in the manure could help with wheat germination and emergence.    

The manure nutrients could easily replace the commercial fertilizer normally applied in advance of planting wheat. The application of fall-applied livestock manure to newly planted or growing crop can reduce nutrient losses compared to fall-applied manure without a growing crop.

Both swine and dairy manure can be used to add moisture to newly planted wheat. It’s important that the wheat seeds were properly covered with soil when planted to keep a barrier between the salt and nitrogen in the manure and the germinating wheat seed.

It’s also important that livestock producers know their soil phosphorus levels, and the phosphorus in the manure being applied, so we don’t grow soil phosphorus levels beyond what is acceptable.

If the wheat is planted at its typical one-inch depth and swine or dairy manure is surface applied there should be no problem applying 5,000 gallons per acre of swine manure or 8,000 gallons per acre of dairy manure. If the wheat is emerging when manure is being applied, there is the possibility of some burn to the wheat from swine manure. If the wheat is fully emerged, there is little concern for burning.

If incorporating manure ahead of planting wheat, try to place the manure deep enough (at least three inches) so the manure does not impact the germination and emergence of the wheat crop. Another option is to incorporate the manure and wait a few days before planting the wheat.

If incorporated, the opportunity to carry some of the manure nitrogen through the winter could allow for a reduction in the amount of topdress nitrogen needed for the wheat crop next spring.

The application of 5,000 gallons of swine finishing manure could contain 200 pounds of nitrogen, 75 pounds of P2O5 and 100 pounds of K2O. The application of 8,000 gallons of dairy manure could contain 175 pounds of nitrogen, 60 pounds of P2O5 and 150 pounds of K2O. Manure nutrient content can vary tremendously from one manure storage facilitate to another but stay reasonably consistence from the same facility year after year.

As always, print out the weather forecast when surface applying manure. Remember the “not greater than 50 percent chance of 0.5 inches of rainfall in the next 24 hours” rule in the western Lake Erie watershed.
Published in Other
September 22, 2017, Ames, IA – I often get asked: “What does the future of the manure industry look like?”

I typically give a little thought and reply: “A lot like it does now. We’ll continue to try to get better at finding ways to more quickly and accurately apply the manure nutrients so we can better capture the fertilizer value.”

I say this because I mean it; manure can be a great fertilizer resource on a farm and when we think about it, livestock production is a critical component of sustainability as the majority of nitrogen, phosphorus, and potassium we feed ends up in the manure and needs to be recycled.

Today I’m going to stop and consider this number a little for you – we are going to focus on liquid manure in Iowa. There is somewhere around 10 billion gallons of manure produced annually (give or take a billion here or there depending on rainfall and the accuracy of my animal populations, the production systems I assume farmers are using, and general variation). It’s a bit hard to fathom this number but I’m going to try a couple ways. The first is if we think of a 40-acre field the manure would be 767 feet tall, or just a little more than the 801 Grand (previously The Principal Building, which as far as I can tell is the tallest building in Iowa). Of course, Iowa really has around one million acres so if we tried to put or manure on all of them each acre would only get around 500 gallons (or you know a little less than 0.02-inches).

As interesting as that is, today I wanted to take a look at slightly different topic, manure application logistics. So we know we are working with approximately 10-billion gallons of manure and if we look in the fall we have approximately 75-days between October and mid-December and then another 30 days of potential application in the spring. So, we are looking at somewhere around 105 application days in a given year (give or take depending on the exact day we start applying and the number of days unsuitable due to soil and weather conditions). That means to get all our manure applied, we need to apply somewhere in the neighborhood of 100-million gallons per day.

So, what does the typical logistics of application look like?

If we think about a drag-line system, when it’s flowing we are probably in the neighborhood of 1,500 gpm for a flow rate; however, there is some setup time involved as we move to new fields. Just for fun, let’s figure that we are somewhere around 50 percent efficient with this system, that is it is running half the time and being reset the other half of the time. If this is true, we’d average around 750 gpm or about 45,000 gallons per hour. Assuming 12-hour days (some companies run longer but I need some time to clean and move from farm to farm) we’d need about 18,500 days to finish all the manure in Iowa. Luckily, there are lots of companies out there to help with this big task.

Similarly, if a manure tanker is used – let’s just say it is a 7300-gallon tank and we get it 95 percent full with each load – and we are hauling three loads an hour, then every hour we are moving 20,000 gallons. To finish hauling all the manure in Iowa in those 105-days, we’d need somewhere around 400 manure spreaders going not stop 12 hours a day.

Luckily, Iowa farmers and commercial manure applicators have recognized this challenge and continuously are purchasing new and better equipment to help ensure they are moving manure from farm to field as cost effectively and responsibly as possible.

For more posts by Dan Andersen, visit his blog – The Manure Scoop.
Published in Other
For years, Fair Oaks, Ind.-based Prairie’s Edge Dairy Farms, LLC, had been trying to find the right technology to remove phosphorus from its manure. Little did Carl Ramsey, farm manager, know that search would lead to a new manure-based fertilizer.
Published in Dairy
August 30, 2017, Ohio - When hay is harvested nutrients are removed from the field. A ton of alfalfa removes approximately 13 pounds of phosphorus (as P2O5) and 50 pounds of potash (as K2O). According to the National Agricultural Statistics Service, Ohio harvested 2.6 tons per acre of alfalfa in 2016.

Many hay fields are not pure alfalfa. The acidic soils of the southern and eastern parts of the state make it difficult to maintain an alfalfa or clover stand so a mixed stand of grass and alfalfa/clover is common. Stands in older fields are often just mostly grass. A grass hay crop will remove just as many nutrients per ton as an alfalfa crop. The big difference is that the annual yields from grass hay fields are usually about 1.3 tons per acre lower than alfalfa fields.

Livestock manure can be used as a fertilizer source to replace nutrients removed through hay harvest. Pen pack beef manure will contain approximately 7.9 pounds of nitrogen (mostly in the organic form), 4.4 pounds of phosphorus (P2O5) and 6.6 pounds of potash (K20) per ton according to OSU Extension bulletin 604. Note that these are older book values and your actual farm manure nutrient levels can vary depending upon the animal's ration, the amount and type of bedding material used and how manure is stored and handled. The recommendation is to sample and test manure at least on a yearly basis. This will provide a more reliable indication of the actual nutrient content of the manure on your farm. For more information about how and when to sample manure, Penn State Extension has a good publication available on-line at http://extension.psu.edu/plants/nutrient-management/educational/manure-storage-and-handling/manure-sampling-for-nutrient-management-planning.

Let's assume a livestock producer wants to use pen pack beef manure to replenish the nutrients in a hay field where he harvested three tons per acre of hay. Since alfalfa and grass hay both remove similar amounts of nutrients per ton, we can assume the three tons of hay removed per acre contained 39 pounds of P2O5 and 150 pounds of K2O. If pen pack beef manure was used to replenish these nutrients, 8.8 tons per acre would be sufficient to replace the phosphorus. However, a rate of 22.7 tons per acre would be needed to replace the potash. The 22.7 ton per acre manure application rate would result in almost 100 pounds of P2O5 being applied per acre, far more than was removed in the three tons of hay.

A farmer would need to be cautious about using this practice repeatedly and growing the soil phosphorus level. It takes about 20 pounds of phosphorus applied to a field to raise the soil test level one pound per acre or two parts per million. So if the soil test level is low, the additional phosphorus from the manure would not raise the soil phosphorus level much in a single year.

The key to using livestock manure to replace the nutrients removed through hay harvest is to get even distribution of the manure across the entire field. Having mowed hay fields as a teenager, where bedded pack manure was applied, I would strongly urge an even distribution pattern across the field. Avoid large clumps that will plug the mower or interfere with regrowth.

If you are unsure how many tons per acre your solid manure spreader applies there is a simple way to make a determination. Make a heavy plastic piece that is 56 inches by 56 inches. Fasten it to the ground with weights on the corners and apply manure across the plastic. Fold up the plastic and weigh the manure captured. Many people use a bathroom scales for this. One pound of manure captured on the plastic is equivalent to one ton of manure applied per acre. Thus, if you captured 10 pounds of manure the application rate was 10 tons per acre.

It is common for county extension offices to have farmers ask; "Can manure be applied between cuttings"? The answer is "yes". Farmers commonly use liquid swine and liquid dairy manure between cuttings to replace soil nutrients and "boost" regrowth of the forage crop in northwest Ohio. There is the potential to damage the crowns of the forage plants but most farmers seem to like the results of the manure application. Solid manure could also be applied between cuttings instead of waiting until fall to apply the manure. The manure application should take place as some as the hay is baled.

Liquid beef manure is also being used to replace nutrients in hay fields. Liquid beef manure we have sampled has contained 40 pounds nitrogen (about half in the organic form and half in the ammonium form), 35 pounds of phosphorus (P2O5) and 30 pounds of potash (K20) per 1000 gallons of product. Applied with a drag hose, this can be an excellent fertilizer for a forage.

A final cautionary note regarding manure application to forage fields: If manure is coming from a herd with animals infected by Johne's disease, that disease can be transmitted by manure to healthy cattle. According to a publication from the US Dairy Forage Research Center at Madison Wisconsin and authored by Michael Russelle and Bill Jokela, the Johne's bacterium can survive on hay. Therefore, those authors' recommendation is that in herds with Johne's, manure should not be applied as a topdressing on fields that will be harvested as dry hay.
Published in Other
All farmers strive to be good stewards of the soil in their fields and the surrounding environment, but they need both solid research and the right tools to optimize their success.

Phosphorus is obviously of particular concern to crop farmers.

“The harmful algae blooms occurring in Lake Erie appear to be from increasing amounts of dissolved phosphorus reaching the lake,” says Glen Arnold, associate professor and field specialist in Manure Nutrient Management Systems at Ohio State University Extension. “The phosphorus in livestock manure is less likely to reach surface waters than the phosphorus in commercial fertilizer, as the phosphorus in livestock manure is slower to become soluble once applied to fields.”

However, Arnold notes that the over-application of livestock manure can raise soil phosphorus to very high levels and result in the element being lost through both surface runoff and through subsurface drainage tiles.

Arnold believes finding new ways of applying manure to growing crops and incorporating the manure more effectively could better assure the phosphorus stays put. His research on the application of manure to growing crops first started with topdressing wheat plots in Putnam County, Ohio, in 2004.

“We wanted to capture value from the nitrogen in manure and open up new windows of application for farmers, instead of them usually applying large amounts of manure in the fall after harvest,” he explains.

Arnold and his team approached swine farmers with finishing buildings for the wheat plot experiments, as swine manure has more nitrogen per gallon than dairy or beef manure. The Putnam County Extension Office and Soil & Water Conservation District collaborated on planning, flagging the replicated plots, field application and harvesting, with plots either receiving urea fertilizer or swine manure. When the results were analyzed, wheat yields under the manure treatments were equal to or greater than the urea treatment most of the time.

By 2009, Arnold, his colleagues and county extension educators in nearby counties were using swine manure to side dress corn plots.

“We removed the flotation wheels from a manure tanker and replaced them with narrow wheels so the manure tanker could follow the tractor down the cornrows,” he says. “The yield results were very positive as the manure treatments were similar to the commercial fertilizer treatments. During unusually dry growing seasons, the manure treatments out-yielded the commercial manure treatments. The same occurred during unusually wet growing seasons as well.”



In addition to the swine-finishing manure side dress plots, during the past year the team tried liquid beef manure and liquid dairy manure, enhanced with commercial nitrogen, to side dress corn plots.

“We used a manure tanker and Dietrich toolbar,” Arnold says. “The beef manure plots performed as well as the swine manure plots. The dairy manure plots also preformed very well, which opens many possibilities for dairy producers to sidedress corn in the years ahead.”

At this point, the team has also completed a third year of side dressing emerged corn with swine manure in Darke County, Ohio, using a drag hose. The drag hose was pulled across the emerged corn through the V3 stage of growth, and the manure incorporated during application using a seven-row VIT unit. Over three years, the corn side dressed with manure averaged 13 bushels per acre more than corn side dressed with urea ammonium nitrate.

In terms of cost differences between urea and manure, Arnold notes that farmers have to eventually land-apply the manure regardless of whether it’s applied to a growing crop or not.

“Capturing the nitrogen value pays for the cost of applying the manure,” he says.

He also believes a drag hose is faster, more efficient and alleviates soil compaction concerns compared to using a manure tanker. Drag hoses also provide flexibility in that the manure can be applied anytime from the day the crop is planted through the V3 stage of corn growth, a six-week window in Ohio if the corn is planted in late April.

In these experiments on application of manure during the growing season, Arnold and his colleagues never measured phosphorus runoff, but he says that if manure is applied in the fall, more than 50 percent of the nitrogen is generally lost, and the tillage to incorporate the manure at that time causes more soil erosion than application during crop growth.

Farmers do have to watch over-application of manure to growing wheat as it will lead to the wheat field blowing flat in June in Ohio. On corn, Arnold says there is nothing to stop a person from over-applying but the extra nitrogen would be wasted.

All-in-all, Arnold believes the application of manure to growing crops works very well. He says the farmers who have participated in the on-farm plots have been pleasantly surprised at how well livestock manure has worked as a sidedress nitrogen source for corn and as a top dress to wheat.

“In addition to providing nitrogen for the corn crop, the manure can also provide the phosphorus and potash needed for a two-year corn-soybean rotation without applying excess nutrients,” he says.

In order to convince as many livestock producers as possible of the economic and environmental advantages of applying more manure to growing crops and applying less manure after the fall harvest season, Arnold and his team will allow farmers to see results first-hand. Because he’s found that farmers who participated in the sidedress plots using a manure tanker are very interested in using a drag hose, Arnold has obtained funds from several companies to build two 12-row drag hose sidedress toolbars. He expects to have them available for loan during the 2017 growing season.

“The plan is to loan the toolbars to both livestock producers and commercial applicators,” he says. “We hope to loan them out to more than a dozen participants this summer.”


Published in Applications
August 17, 2017, Fruitland, IA — All farmers know that crops need nutrients to grow, particularly carbon. That's why they spread manure or compost on their fields. But compost fades fast — half of its carbon degrades in five to eight years.

In recent years, biochar has been hailed by some as an alternative to manure or compost, but  biochar is expensive and poor quality biochar can increase the soil's acidity, damaging crops. READ MORE 
Published in Applications
June 8, 2017, Charleston, WV – West Virginia’s Department of Agriculture says plans have been written for managing fertilizer and other nutrients on 90,000 acres in the state’s eight-county Chesapeake Bay drainage region.

Agriculture Commissioner Kent Leonhardt says West Virginia is furthest along among the bay’s watershed states toward the goal, which helps restore land for productive use. READ MORE
Published in State
Beef and dairy farmers obviously want to keep as much nitrogen as they can in the soil after they apply any type of manure to their fields, but there aren’t many recommendations out there about whether more N is retained through applying raw dairy manure or digestate (from anaerobic digesters).
Published in Other

January 18, 2017 – The Livestock and Poultry Environmental Learning Center has partnered with the Manure & Soil Health team to present four roundtables aimed at improving knowledge and understanding about the role of manure in soil health.

The four, hour-long roundtables will consist of a panel discussion with two to three experts who will be asked to summarize their current understanding of each roundtable topic. Each panel will also include a practitioner who will share perspective on critical information needs of farmers and advisors and field experiences relative to use of manure. Panels will be moderated to encourage interaction with audience. Roundtable participants will be invited to ask questions of panelists and share expertise and experience through polling pods and a chat box.

All of the roundtables start at 11 a.m. CT (noon ET) and in the following order:

  • Feb. 9, 2017 – Manure & soil health testing (Dr. Bianca Moebius-Clune, Donna Brandt, Russell Dresbach, Geoff Ruth)
  • Feb. 16, 2017 – Manure & soil biology (Rhae Drijber, Michele Soupir, Dr. Jonathan Lundgren)
  • Feb.23, 2017 – Manure & soil erosion, runoff, and losses (Nathan Nelson, John Gilley, Mike Kucera, Andy Scholting)
  • March 9, 2017 – Manure & cover crops (Tim Harrigan, Barry Fischer, Heidi Johnson, Sarah Carlson)

Attendees are asked to register for the dates that correspond to the topics they are interested in. After registering, a confirmation email containing information about joining the meeting will be sent.

If a microphone and speakers are available on the computer being used, phone line participation is not needed. For those new to Zoom, three short videos may prove helpful:

Published in Other

December 8, 2016, Rossburg, OH – When Ohio farmer Tom Harrod first heard about sidedressing hog manure, he was skeptical.

He went to a county extension program after talking to some farmers about their use of hog manure on growing corn, then he decided to give it a try. After achieving good yields without using commercial fertilizer, he became sold on the practice. Now, Harrod says, it’s driving profits in his operation. READ MORE

Published in Swine

 

Each year, more than 14 million tons of chicken litter is generated in the U.S. Studies have shown that using poultry litter to fertilize crops can be as effective as using synthetic fertilizers.

In a new study, researchers at the USDA’s Agricultural Research Service have calculated how much chicken litter farmers need to apply to cotton crops to maximize profits.

“Most research focuses on the amount of poultry litter needed to maximize crop yields,” says Haile Tewolde, lead author of the study. “We wanted to know if aiming for maximum yield always makes economic sense for farmers.”

Tewolde and his colleagues found that it doesn’t. Using less chicken litter than what was needed to maximize crop yields actually increased profits for farmers. Profits increased even though crop yields were lower.

It might appear that higher crop yields would lead to higher profits. But using more fertilizer also increases costs for farmers. The researchers predicted that once an optimal amount of fertilizer had been applied to crops, any more would raise costs more than profits.

The study was conducted in two farms in Mississippi. Researchers applied varying amounts of chicken litter as fertilizer on replicated plots then compared yield and profitability. They also compared the use of synthetic fertilizers and chicken litter.

They found that chicken litter applications over a certain level did not result in net economic gains. Instead, it led to economic losses even though yields were somewhat higher.

Maximum cotton yields were achieved by applying between 9,000 to 12,000 pounds of chicken litter per acre. In contrast, applying about 7,000 pounds of chicken litter per acre each year was enough to maximize profits.

The researchers also confirmed studies that showed chicken litter to be as effective – sometimes more so – than synthetic fertilizers.

If farmers can use less poultry litter and still maximize profits, pollution can be managed more effectively.

 

 

 

 

Published in Poultry

October 25, 2016, Boonsboro, MD — “Nutrient management is alive and well in Maryland,” according to University of Maryland Extension agent Jeff Semler. One aspect of nutrient management is manure injection, which was featured during a recent field day at Debaugh Dairy Farm in Boonsboro.

The field day was funded in part by a grant from the Chesapeake and Atlantic Coastal Bay’s Trust Fund, and attracted more than 150 people, most of them farmers. READ MORE

Published in Dairy

October 13, 2016, There are more chickens in the United States than people in the entire world. Raising huge numbers of chickens generates large quantities of waste. This waste includes feces, feather, and bedding materials – collectively called chicken litter.

Each year, more than 14 million tons of chicken litter is generated in the U.S. Other poultry – such as turkeys, ducks, and geese – also contribute litter. Poultry litter is often recycled as manure by farmers. Studies have shown that using poultry litter to fertilize crops, such as cotton, can be as effective as using synthetic fertilizers.

In a new study, researchers at the U.S. Department of Agriculture’s Agricultural Research Service have calculated how much chicken litter farmers need to apply to cotton crops to maximize profits.

"Most research focuses on the amount of poultry litter needed to maximize crop yields," says Haile Tewolde, lead author of the study. "We wanted to know if aiming for maximum yield always makes economic sense for farmers."

Tewolde and his colleagues found that it doesn't. Using less chicken litter than what was needed to maximize crop yields actually increased profits for farmers. Profits increased even though crop yields were lower.

It might appear that higher crop yields would lead to higher profits. But using more fertilizer also increases costs for farmers. The researchers predicted that once an optimal amount of fertilizer had been applied to crops, any more would raise costs more than profits.

The study was conducted in two farms in Mississippi. The researchers applied varying amounts of chicken litter as fertilizer on replicated farm plots. Then, they compared yield and profitability between the seven plots. They also compared the use of synthetic fertilizers and chicken litter.

They found that chicken litter applications over a certain level did not result in net economic gains. Instead, it led to economic losses even though yields were somewhat higher.

Maximum cotton yields were achieved by applying between 9,000 to 12,000 pounds of chicken litter per acre. In contrast, applying about 7,000 pounds of chicken litter per acre each year was enough to maximize profits.

The researchers also confirmed studies that showed chicken litter to be as effective – sometimes more so – than synthetic fertilizers.

Poultry litter contains high levels of nitrogen, an important nutrient for plants. It also contains other minerals needed by crops, including phosphates and potash. Using poultry litter as manure also recycles a waste product and can benefit the environment.

However, using too much poultry litter can cause environmental pollution. Nitrogen and phosphorus in the poultry litter can dissolve in runoff from storms. These dissolved nutrients can pollute surface and ground waters. If farmers can use less poultry litter and still maximize profits, pollution can be managed more effectively.

"Ten to 15 years ago it was not common to use poultry litter as fertilizer for row crops such as cotton," says Tewolde.

Today, there is increasing acceptance of poultry litter as fertilizer, including in commercial farms. But research on the use of poultry litter as fertilizer is not often geared towards maximizing profit in larger, commercial farms.

"This is the first comprehensive study looking at chicken litter use and profitability in commercial farms," says Tewolde. "We are the first to identify ways to calculate optimal rates of applying chicken litter manure and maximize earnings at this scale of farming."

One benefit of conducting the study on commercial fields is that "farmers can start applying our findings straightaway," says Tewolde.

Though the study was conducted in Mississippi, it has wider implications.

"The approach we use to determine optimal rates of chicken litter application will be applicable in other cotton-growing areas around the country," says Tewolde.

Tewolde's research has been featured in Crop Science.

Published in Poultry
Page 1 of 4

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Next Generation Manure Management Practices Webinar
Fri Dec 15, 2017 @ 2:30PM - 03:30PM
South Dakota Pork Congress
Wed Jan 10, 2018 @ 8:00AM - 05:00PM
Minnesota Pork Congress
Tue Jan 16, 2018 @ 8:00AM - 05:00PM
Value of Biogas West
Tue Jan 16, 2018 @ 8:00AM - 05:00PM
Iowa Pork Congress
Wed Jan 24, 2018 @ 8:00AM - 05:00PM