Energy

December 12, 2017, Benson, MN – State regulators said they are investigating the death of a worker who fell to his death at a soon-to-be-closed biomass plant in central Minnesota that supplies power to Xcel Energy. The man fell into a hopper at the Benson Power plant, formerly known as Fibrominn, in Benson on Dec. 6, according to Minnesota's Occupational Safety and Health Administration (OSHA). READ MORE
October 4, 2017, Finland – The electricity used at this year’s Helsinki International Horse Show will be produced entirely with horse manure at Fortum’s Järvenpää power plant. The electricity consumption of the event is expected to be about 140 MWh, and the origin of the electricity will be verified by the Guarantee of Origin system maintained by Fingrid. Producing the energy needed for the event requires the annual manure output of 14 horses. This is the first time in the world that the electricity for a major horse show will be produced entirely with horse manure. “I am really proud that electricity produced with horse manure can be utilized for an event that is important to equestrian fans and the horse sector,” said Anssi Paalanen, vice president of Fortum HorsePower. “It is great that Finland’s biggest and best-known horse show is a forerunner in energy and environmental issues.” “It’s great to participate in electrifying the pilot event of the Fortum HorsePower concept with horse manure,” said Tom Gordin, event director. “Overall, the concept is fascinating and creates tremendous opportunities for the entire horse sector in Europe. This is also an important part of our own Horse Show Jumps Green environmental project.” Fortum HorsePower is a bedding and manure management service for stables, with the manure generated at the stables transported for use in energy production. The service has been operating in the Uusimaa region for a couple of years, and the service area is expanding all the time. In addition to the Helsinki metropolitan area, it now covers much of southern and western Finland. The Fortum HorsePower service was launched this autumn also in Sweden, where there are already close to 3,000 horses leaving green hoof prints and producing energy through the service. During the event, Fortum HorsePower will deliver wood-based bedding for the 250 or so horses that will be staying in temporary stalls. The manure-bedding mixture that is generated will be transported to Fortum’s Järvenpää power plant where it will be utilized in energy production. An estimated 135 tonnes of manure-bedding mixture will be generated during the event. The Helsinki International Horse Show will be held on October 18 to 22.
February 15, 2017, Rhodesdale, MD – Governor Larry Hogan and Agriculture Secretary Joe Bartenfelder recently toured the Murphy family’s Double Trouble Farm – the first Maryland poultry operation to install cutting-edge technology that converts poultry litter to energy. The Maryland Department of Agriculture awarded a $970,000 animal waste technology grant to Biomass Heating Solutions, Inc. (BHSL) for the manure-to-energy project and an additional $139,000 to monitor its operation for one year. “I am proud to recognize the Murphy family for bringing this innovative technology to Maryland,” said Governor Hogan. “I commend the Murphy’s and the entire Double Trouble Farm team for leading the way for farmers to improve water quality, increase energy independence, and improve animal waste management to ensure the sustainability of animal agriculture in our state.” Maryland’s Animal Waste Technology Fund is a grant program that provides seed funding to companies that demonstrate innovative technologies to manage or repurpose manure resources. These technologies generate energy from animal manure, reduce on-farm waste streams, and repurpose manure by creating marketable fertilizer and other products and by-products. To date, the program has approved $3.7 million in grants to six projects. “Biomass Heating Solutions, Inc, with the support of Mountaire, has adapted innovative manure management technology to benefit the poultry industry and the Murphy family’s farm. The system utilizes poultry litter as a feedstock by converting it to energy to heat the farm’s chicken houses and generate electricity,” said Secretary Bartenfelder. “A great deal of credit goes to the Murphy family for taking the time and risk involved in being the test case for a promising new way of doing business.” This project has the following benefits: Reduced environmental impact: A reduction in the potential environmental impact of manure resources Lower energy costs: A reduction in energy costs through using heat from the manure as a source for heating poultry houses Improved animal welfare: Improved animal welfare, with improved health and reduced risk of diseases Improved performance: Faster growth – poultry reaching target weight more quickly Additional revenue: Potential expansion of revenue streams – earnings from the sale of excess electricity and a fertilizer by-product “I am excited that a unique piece of technology designed in Ireland is going to transform U.S. poultry production and play a crucial role in reducing the environmental impact of the industry on the Chesapeake Bay,” said Denis Brosnan, chairman of Biomass Heating Solutions, Inc. “I hope this pilot project is the start of a broader initiative to turn poultry manure from a potential pollutant into a valuable source of energy.” Biomass Heating Solutions, Inc. will use electricity generating technology (fluidized bed combustion) to process poultry litter into energy for heating two of four poultry houses during the demonstration period. The system is projected to generate 526 megawatts of electricity per year. Adding heat to poultry houses has been proven at other sites to improve the flock growth rate and overall bird health. These benefits will enhance potential profit margins, reduce payback period for the technology, and improve the likelihood of transferability to other poultry operations. The Murphys are working with BHSL to explore markets for the high-phosphorus ash by-product including Maryland fertilizer companies. As a result of energy production and marketing the ash, 90 percent of nutrients in the poultry litter produced by 14 poultry houses will have alternative uses. “Mountaire is excited about the potential that new alternative use technologies for litter bring to the poultry industry,” said Bill Massey, Mountaire director of housing and feed milling. “We will continue to work with the Murphys, MDA and BHSL on this manure to energy project. Our company and our industry continue to look for solutions to be good environmental stewards.”
  Aug. 27, 2015, Herefordshire, UK – Cargill’s European poultry business has signed a 20-year agreement to convert poultry manure to energy with technology from BHSL.
July 29, 2014, Baltimore, MD – The project seemed simple enough — build a waste-to-energy plant on the Eastern Shore fueled by poultry manure, keeping it from flushing into and polluting the bay, while creating green jobs and boosting Maryland’s fledgling renewable energy industry But 18 months after being heralded by Gov. Martin O'Malley, the $75 million project has been stymied after prospective sites and a potential partnership fell through. Now state officials are weighing giving Green Planet Power Solutions, the California-based company chosen to build the 13.4-megawatt plant, a nearly $35 million subsidy on top of what the state previously agreed to pay for its power. READ MORE
October 24, 2013, Annapolis, MD – An Annapolis firm sees a money-making opportunity in household garbage and chicken waste.Energy3 LLC is trying to interest Maryland municipalities in a procedure to gasify curbside garbage — and chicken manure — and then turn it into electricity. The power generated can be sold back to the grid and create another revenue stream for communities. READ MORE
A family is turning the hog manure into methane to power the family farm, reduce greenhouse emissions and generate income.Lisa and Drew Remley of Remley Farms held an open house to unveil the new 20,000-gallon anaerobic methane digester.Power from the biodigester power will reduce the farm's $3,000-$3,500 monthly electric bill. | READ MORE
This February was the celebration of a great partnership of California dairies and California Bioenergy (CalBio).
You can think of an anaerobic digester as a big metal stomach. Biodegradables go in, get composted, and turned into energy. And now, the hope is that the waste turns into a profit.Matthew Freund, president of Freund's Farm in East Canaan, said that anaerobic digestion technology let him diversify his business. A unit built in 1997 took in cow manure and allowed him to create a new product: biodegradable seed planters called "CowPots." | READ MORE
Installation and construction are complete on a DVO Inc. anaerobic digester at Ar-Joy Farm, a dairy farm in Cochranville, Pennsylvania.This is DVO's first installation in Pennsylvania, bringing the number of states with a DVO digester to 19. Its patented digester system has also been constructed in six foreign countries.Anaerobic digestion (AD) is a collection of processes by which naturally occurring microorganisms transform waste into valuable byproducts in a controlled, oxygen-free environment.DVO's patented Two-Stage Linear Vortex anaerobic digester is unlike any other technology. Traditional AD technologies featuring above-ground tanks are inefficient and costly to operate."We are honored to be working with Marilyn and Duane Hershey (owners of Ar-Joy), a couple long admired in their community and acclaimed in the dairy industry for their advocacy and leadership. Marilyn serves as chair of Dairy Management, Inc. and in 2017 was named Dairy Woman of the Year at the World Dairy Expo. Duane serves on the Land O'Lakes Board of Directors," said Steve Dvorak, president of DVO. "We know they are dedicated to environmental sustainability and are proud they chose to implement DVO's digester technology."The DVO anaerobic digester processes the waste from Ar-Joy's 700 milking cows, as well as local organic waste streams. Currently the farm is adding waste from a potato chip company three times a week and is seeking additional feedstocks for the digester.The biogas generated from the waste streams is powering a 300-kW gen-set which delivers renewable electricity to the local grid. The farm has a net-metering program with its local utility which allows the farm to lower its electrical costs by off-setting the power from its electrical meters. Any excess generated power not used by the dairy is sold to the utility.The dairy is utilizing the separated digested solids for bedding, having previously bedded with sand. The digested liquid is stored in a lagoon to be applied as fertilizer on to growing crops, increasing crop yield and reducing the likelihood of nutrient runoff."The digester provides us a variety of environmental benefits, such as producing power and recycling waste. A big driver for us was the ability to expand our operation and bring in additional revenue without adding cows," explained Duane Hershey. "The community response to our digester has been real positive. When the neighbors come down and see it, they get excited. They all say we need more of these digesters on farms."Learn more about DVO's solutions for agricultural wastes and renewable energy here, http://www.dvoinc.com/
Marin County, Calif. - On one organic dairy farm, the feed truck runs on cow power."I was able to put together a fully electric truck to feed the cows that's powered by the cow's waste. We claim that's the first one in the world to do that," says Albert Straus, CEO of Straus Family Creamery in Marin County, California.When cow manure breaks down, it releases methane, a potent global warming gas. But that methane can be captured and used to make electricity. Using technology called a methane digester, Strauss has been converting his cow's manure into energy for the last 14 years. The process produces enough electricity to power the whole farm. And now, that energy is also being used to charge his electric truck. | For the full story, CLICK HERE
Calgren Dairy Fuels is becoming known as a world leader in biogas production and utilization, with good reason. Of the 18 dairy digester projects that were recently awarded more than $35 million in funding by the California Department of Food and Agriculture, seven of them involve Calgren.
Oil and gas wells and even cattle release methane gas into the atmosphere, and researchers are working on ways to not only capture this gas but also convert it into something useful and less polluting.
 The pilot system at Scott Brothers’ converts about 88 percent of the dairy’s gasified manure into biochar and other products Sustainability in farming is a phrase that’s used a lot these days. In its simplest form, it’s about continual operation with minimal impact on the environment. At Scott Brothers’ Dairy Farms in Moreno Valley, Calif., sustainability has reached a never-before-achieved level, one that’s attracting attention from around the globe. Manure plays a central role in the farm’s ‘Circle of Energy’ concept: the 1,100-strong herd eats high-quality feed produced from the farm’s 700 acres, harvested with machinery powered by a no-sulfur diesel fuel derived from the cows’ manure. If that wasn’t impressive enough, the system also produces irrigation water, potable water, fertilizer, high-value wax, sulfur and valuable nutrients, which, according to Steve McCorkle, enables these and future farmers to truly control their own destinies. McCorkle is the CEO of Ag Waste Solutions (AWS) of Westlake Village, Calif., the designer and installer of the system at Scott Brothers. He got the idea of making diesel from manure during years travelling the globe working in the energy sector. “It appeared to me that farmers all over the world seemed to share two very strong, common goals: a desire to be the best possible stewards of their land, and a desire to be as independent as possible,” he says. At the same time, when McCorkle was working in remote deserts in the Middle East with no infrastructure for hundreds of miles, he and his colleagues had to convert waste gases into electricity and recycle wastewater. “I realized that if we could economically convert wastes into diesel fuel, we could literally fuel our own petroleum exploration – and also achieve what farmers wanted, to be much more independent of the world outside their farms,” he says. It seemed to him that there were two main factors that would make small-scale on-farm diesel production viable. One was modular and portable refining equipment, and, the second, a waste feedstock with a consistent chemical composition to make pre-conditioning less costly. With manure fitting the feedstock bill, McCorkle began in 2006 to work on the refining technology. By 2012, he was collaborating with the Scott brothers, who were looking hard at that point for solutions to deal with new groundwater and watershed salt load regulations – and an impending ban on applying manure to forage crops to boot. With some funding help from the California Energy Commission (CEC), the current pilot system was up and running at Scott Brothers by April 2015.   How it worksThe system first removes almost all suspended solids and 40 percent of dissolved solids from the dairy’s liquid manure. Some of the extracted water is further purified to make it potable (and therefore satisfy manure application requirements specific to a regional state regulatory agency). The solids go into a pyrolysis gasifier and the resulting syngas is purified. Using the well-proven 90-year-old Fischer-Tropsch (FT) process, the hydrogen and carbon in the gas is converted to completely sulfur-free renewable diesel products. A refined wax (worth up to three times the price of diesel) can be processed further and/or blended with fuels such as kerosene – a significant additional farm revenue stream. AWS can also recover elemental sulfur and other nutrients from the process for either sale or re-use on farm. Challenges along the wayAs might be imagined, significant hurdles presented themselves during the years of AWS tech development, with conventional thinking and regulations topping the list. “Operating permits are very difficult to obtain when the technology is new,” McCorkle explains. “Grants and incentives are generally available for new concepts and commercially-proven systems, but it’s not easy for ‘in-between’ tech concepts like what we’ve developed, using new enhancements to make the FT process economically viable on a small-scale, to gain financial support.” When it was time to install at Scott Brothers, more permit and funding issues came up. “We were not allowed to even move the AWS equipment to the farm until the ‘lead permit’ was secured (South Coast Air Quality Management District, SCAQMD),” McCorkle remembers. “Although AWS had obtained one of these permits at another farm site previously, and paid to expedite the Scott Brothers’ permit applications, it took a long time to obtain. We finally received help from the Governor’s Office of Business and Economic Development.” The CEC grant required that the project obtain an exemption from CEQA (California Environmental Quality Act), and the only way to do that was to build a temporary structure to shelter the AWS equipment. “This is a large fabric-covered structure that we anchored to the ground with standard shipping containers,” explains McCorkle. “The county stipulated that we needed to supply engineering drawings of the entire facility, including the stresses that the shipping containers would encounter. We had to hire an engineer to design modifications to address the wind and other transverse forces the shipping containers would encounter on the farm.” Taking the long view, AWS made sure its system exceeds the most stringent California regulations. “Scott Brothers convinced us that if we could meet and exceed these requirements, we could then meet and exceed any standards across the globe,” says McCorkle. “An example of this would be the Zero Total Dissolved Solids (TDS) mandate and salt loading restrictions in the watershed. We are proving that we can meet these tough requirements through technology alone, as we have done at Scott Brothers, by removing all of the salts and TDS from the water and producing a potable water discharge. Once that has been recognized, we may be able to prove that we can add certain amounts of TDS into the soil in the form of biochar.” McCorkle adds the AWS biochar combines the two key elements of healthy soil amendments, carbon and micronutrients, into one product, with the same content as raw manure but without the potential surface and groundwater issues. This is why he decided to concentrate the gasification efforts on producing a nutrient-rich biochar product, and capitalize on that before other manure gasifiers could get permitted in California to produce it. Currently, the pilot system at Scott Brothers converts about 12 percent of the dairy’s gasified manure to diesel fuel per day, and about 88 percent into biochar and other products. To be a commercially viable, 24-7 operation and complete the ‘Circle of Energy,’ the liquid fuels production module will have to be upsized. “We are now applying for a Phase II CEC grant to accomplish this,” says McCorkle. “We will then go to market with our new gasifier design, starting with biochar systems on farms to help farmers meet their permit requirements while selling and/or stockpiling biochar as a feedstock for future FT biofuel production at central plants. Biochar is an excellent feedstock for FT biofuel production that does not have a shelf life.”   In reflecting on the entire process, McCorkle has nothing but praise for Scott Brothers, which he describes as “an outstanding partner in overcoming the numerous challenges.” And while it was onerous, he believes the process of helping regulators understand the advantages of the AWS concept was very worthwhile because of the new standards and regulations that are being created. “Although this approach can be very time consuming and costly,” he notes, “we believe that working directly with regulators and stakeholders is ultimately the best way to have the AWS solution become standard for creating future profit centres from manure.” McCorkle strongly believes that creating viable profit centers from manure will have the highest impact towards making livestock operations more sustainable. “Once the AWS ‘Circle of Energy’ concept is working well on individual livestock farms, the circle will grow to include other farms and organic biomass feedstocks in the community, thereby reducing the carbon footprint of the entire community,” he says. “This will raise the resulting carbon credits and funding opportunities for sustainable solutions that will improve the agricultural economy as well as the environment. Many such community opportunities exist world-wide, and the AWS solution can be scaled and tailored to meet the needs of any community.” Biochar and water from food waste digestersAWS is also working to accept materials for its systems from anaerobic digesters that process food and other organic waste. In late July, AWS signed an agreement to perform a series of controlled greenhouse vegetable trials using biochar and fertigation water from an AWS system processing ‘food waste anaerobic digestate,’ in addition to biochar and fertigation water processed from manure. McCorkle says this is very exciting because anaerobic digestate is usually considered a waste that is increasingly difficult to permit for land application in its raw form, but value-added biochar and fertigation water can be readily permitted.      
September 1, 2015, Wicomico County, MD – Wicomico County will be the site of Maryland’s biggest attempt yet to find alternative uses for the Eastern Shore’s overabundance of poultry litter, state agricultural officials say. Renewable Oil International, an Alabama company, has received a $1.2 million state grant to test technology it says can reduce the volume of manure by 50 to 63 percent. The grant comes from the Maryland Department of Agriculture’s Animal Waste Technology Fund. READ MORE
April 22, 2015 - Scientists at the U.S-based company Battelle recently succeeded at the United States Department of Energy (DOE) challenge of making commercially viable transportation fuels from biomass pyrolysis. The team demonstrated the durability of a continuous hydrotreatment process that converts bio oil from biomass pyrolysis into transportation and aviation fuels. The DOE's specific challenge was to demonstrate at least 1,000 hours of bio oil hydrotreatment on a single catalyst charge, while producing a fuel product suitable as a transportation fuel-blend stock at commercially realistic yield. Longevity of hydrotreatment catalysts has long been the Achilles' heel for converting biomass pyrolysis oils to biofuels. Battelle, with its proprietary process and the help of Pacific Northwest National Laboratory (PNNL), was able to overcome and surpass this hurdle relatively quickly, and now has successfully registered more than 1,200 hours on its hydrotreatment catalysts. Scientists and engineers have set their sights on achieving the commercial standard of 4,000 hours in the near future. Zia Abdullah, Institute Fellow at Battelle, was the principal investigator on the project. "I am grateful to the DOE for their partnership in this effort and to Battelle's leadership for their ongoing commitment," says Abdullah. Marathon Petroleum Corporation provided Battelle with some support in the DOE and helped in assessing the biofuel product. Scientists at PNNL developed bio oil stabilization catalysts for Battelle's process. John Holladay, manager of the biomass sector at PNNL, agrees. "This is how public-private partnerships are supposed to work and it couldn't have happened without DOE's support," he says. Battelle's leadership is committed to biofuels but see the best near term market opportunities in biochemicals. "Biochemicals to enable biofuels," notes Drew Bond, vice president for technology commercialization for Battelle's energy, health and environment business. "Simply put, that's our strategy. And we're not alone in this but I can say that we are quite far along thanks to the foresight of our leadership." Since 2011, Marty Toomajian, president of Battelle's energy, health and environment business, has led Battelle's efforts to commercialize a distributed pyrolysis system for bio oil production. "Energy security is all about energy supply diversity," he says. "We have tremendous fossil reserves in our country that should not be taken for granted. But neither should we take our renewable resources for granted. That's why our work at Battelle spans across both, with the goal to maximize our fossil and renewable resources, which aligns with the President's "all the above" strategy in the energy sector." Battelle has also made significant progress towards commercializing its modular pyrolysis systems. It already has scaled up its proprietary technology from concept to a pilot system that processes more than one ton of biomass per day.  It was Battelle's ton-per-day pilot system that supplied the bio oil for its DOE-funded hydrotreating project. Adding to the achievements and near-term commercial focus, late last year Battelle entered into a strategic partnership with Equinox Chemicals, a specialty chemical manufacturer. Together, they seek to use the platform pyrolysis technology for the production of biopolyols and biochemicals with applications in multiple, rapidly growing, high-value markets.
ARS scientists at Wyndmoor, Pennsylvania, are developing this mobile pyrolysis processing system that may one day be used on farms to produce bio-oil. Photo by Charles Mullen. April 17, 2014 - Innovations at the U.S. Department of Agriculture (USDA) are bringing researchers one step closer to developing "green" biofuel production systems farmers can use to meet on-farm energy needs, or to produce renewable fuels for commercial markets. These findings by Agricultural Research Service (ARS) scientists Charles Mullen and Akwasi Boateng promote the USDA priority of finding new bioenergy sources. ARS is USDA's chief intramural scientific research agency. Fast pyrolysis is the process of rapidly heating biomass from wood, plants and other carbon-based materials at high temperatures without oxygen. Using pyrolysis to break down tough feedstocks produces three things: biochar, a gas, and bio-oils that are refined to make "green" gasoline. The bio-oils are high in oxygen, making them acidic and unstable, but the oxygen can be removed by adding catalysts during pyrolysis. Although this adds to production costs and complicates the process, the resulting bio-oil is more suitable for use in existing energy infrastructure systems as a "drop-in" transportation fuel that can be used as a substitute for conventional fuels. In 2013, the ARS team filed a patent application for a new pyrolysis process called Tail Gas Reactive Pyrolysis (TGRP), which removes much of the oxygen from bio-oils without the need for added catalysts. The team conducted a pilot-scale study using three types of biofeedstock with different characteristics: oak, switchgrass, and pressed pennycress seeds. The researchers modified the standard pyrolysis process by gradually replacing nitrogen gas in the processing chamber with the gases produced during pyrolysis. The TGRP process was very effective in lowering oxygen levels and acidity, and no additional catalysts were needed. Bio-oils produced from oak and switchgrass by the new process had considerably higher energy content than those produced by conventional fast pyrolysis. The energy content of the oak bio-oil was 33.3 percent higher and contained about two-thirds of the energy contained in gasoline. The energy content for switchgrass was 42 percent higher, slightly less than three-fourths of the energy content of gasoline. The scientists, who work at the ARS Eastern Regional Research Center in Wyndmoor, Pa., published results from their research in 2013 in Energy Fuels. Read more about this research in the April 2014 issue of Agricultural Research magazine.
Dec. 17, 2012 - New research from North Carolina State University provides molecular-level insights into how cellulose – the most common organic compound on Earth and the main structural component of plant cell walls – breaks down in wood to create "bio-oils" which can be refined into any number of useful products, including liquid transportation fuels to power a car or an airplane. Using a supercomputer that can perform functions thousands of times faster than a standard desktop computer, NC State chemical and biomolecular engineer Dr. Phillip Westmoreland and doctoral student Vikram Seshadri calculate what's occurring at the molecular level when wood is rapidly heated to high temperatures in the absence of oxygen, a decomposition process known as pyrolysis. The results, which could help spur more effective and efficient ways of converting farmed and waste wood into useful bio-oils, appear in a feature article on the cover of the Dec. 13 print edition of the Journal of Physical Chemistry A. Much of the energy that can be extracted from wood exists in the cellulose found in cell walls. Cellulose is a stiff, rodlike substance consisting of chains of a specific type of a simple sugar called glucose. The paper describes a mechanism for how glucose decomposes when heated. The mechanism is somewhat surprising, Westmoreland says, because it reveals how water molecules and even the glucose itself can trigger this decomposition. "The calculations in the paper show that although the decomposition products and rates differ in glucose and cellulose, the various elementary steps appear to be the same, but altered in their relative importance to each other," Westmoreland says. Knowing the specifics of the decomposition process will allow researchers to make predictions about the ease of extracting energy from different types of wood from various soil types. The researchers are now conducting experiments to verify their calculations.
The BlueBox Ultra has been specially developed for the biological treatment of manure and fermentation residues and works the same way as a municipal wastewater treatment plant. In the bioreactor of the BlueBox Ultra, the manure is converted into water, which contains only traces of nitrogen and phosphorus and is therefore ideally suited for irrigation. Since nitrogen and phosphorus are almost completely removed, only very small surfaces are required for application. The BlueBox Ultra eliminates the need for expensive and environmentally harmful manure transports, where manure sometimes has to be transported over hundreds of miles."I no longer want to have to carry out expensive manure transports," explains farmer Jorn Ahlers, who runs a farm with a biogas plant in Lower Saxony. "I am convinced of the technology and user-friendliness of the BlueBox and I am confident that the system will go into operation on my farm this year.""In recent months, we have presented our ground-breaking manure solution to many farmers and operators of biogas plants in Germany, especially in the manure hot spots of North Rhine-Westphalia, Lower Saxony and Bavaria. The sale of the first manure treatment plant in Germany is of course an important milestone for us," says David Din, CEO of Bluetector. "Our BlueBox enables farmers to convert their manure into water with a low-cost bioreactor without the need for costly and maintenance-intensive equipment such as reverse osmosis or centrifuges."
JSE-listed Montauk Energy has struck a deal with a dairy farm in California where it will for the first time transform cow manure into natural gas.The company mainly extracts and converts methane gas from waste landfills across the US where it benefits from subsidies through the Renewable Fuel Standard (RFS), a federal programme.Montauk said it entered into a joint venture agreement with the dairy farm in July and would own and operate a manure digester and build, own and operate a renewable natural gas (RNG) facility for 20 years. | For the full story, CLICK HERE. 
In early June, Senators Michael Bennet of Colorado and Sheldon Whitehouse of Rhode Island introduced the Carbon Utilization Act of 2018 which will incentivize emerging carbon utilization technologies, such as digesters and carbon capture, utilization, and sequestration (CCUS) by providing increased access to USDA loan guarantees, research programs, and rural development loans. The bill will create education and research programs and encourage interagency collaboration to advance these technologies. The American Biogas Council praised its introduction as the programs within it can help farms become more resilient and sustainable.Senator Michael Bennet (D-CO) said, "As we look to the future of clean energy, we must invest in innovative, secure, and low-carbon technologies—especially in rural communities. We will work to include these energy provisions in the Farm Bill to provide funding for projects that create jobs, secure our electricity systems, and combat climate change. We must ensure that rural communities are included in the clean energy economy."Senator Sheldon Whitehouse of Rhode Island (D) added: "Experts agree that transforming pollutants into something useful ought to be part of our fight against climate change. That's why we need to help promising carbon capture and biogas technologies compete in new markets, like on farms and at other rural businesses. This bill will help those technologies find new uses in agriculture while reducing carbon and methane pollution, benefiting both our climate and the rural economy. That's a clear win-win.""We are grateful for the leadership and vision of Senators Bennet and Whitehouse in recognizing the significant benefit that biogas systems can provide our country," said Patrick Serfass, ABC's executive director. "A robust agriculture industry is essential to American prosperity. Like biogas systems help our nation's farms, the Carbon Utilization Act of 2018 will strengthen farming operations, increase sustainability and create new revenue streams to help protect family farm operations, especially during commodity price swings."
Kinston, NC - Many homes in Eastern North Carolina may now be powered by an alternative source of energy that uses a mixture of natural gas and swine-derived biogas.A switch thrown last week by Duke Energy infused methane captured from Duplin County hog lagoons into a natural gas pipeline.Optima KV is the project developer and has partnered with Duke Energy to supply the energy and Smithfield Foods to donate the land for a facility to collect the hog methane. Once collected, the gas is cleaned and injected into the natural gas pipeline to serve two Duke Energy plants in Eastern North Carolina.The project is expected to generate about 11,000 megawatts-hours of renewable energy annually, enough to power about 880 homes for a year, according to the N.C. Pork Council. | For the full story, CLICK HERE.
February 8, 2018, Sacramento, CA – Renewable Dairy Fuels (RDF), a business unit of Amp Americas, recently announced that construction is underway on the country’s largest on-farm anaerobic digester-to- vehicle fuel operation. Located in Fair Oaks, Indiana, the dairy project will be the company’s second biogas facility producing renewable natural gas from dairy waste for transportation fuel. Amp Americas received the first dairy waste-to-vehicle fuel pathway certified by California's Air Resources Board (CARB) for its first RNG project at Fair Oaks Farms in northwest Indiana. The project was also awarded a Carbon Intensity (CI) score of -254.94 gCO2e/MJ, the lowest ever issued by CARB. In addition to generating renewable American energy, on-farm anaerobic digester operations improve sustainability, environmental stewardship and energy independence. The new facility will be 50 percent larger than RDF’s operation at Fair Oaks Farms and will be operational this summer. The site is located in Jasper County, IN, just a few miles from Fair Oaks Farms. Every day, three digesters located at three dairy farms will convert 950 tons of dairy waste from 16,000 head of milking cows into 100 percent renewable transportation fuel. The RNG will then be injected into the NIPSCO pipeline. Each of the digesters is a DVO, Inc. designed and built Mixed Plug Flow digester. “Transportation is now the largest source of greenhouse gases in the U.S., and a major source of smog-causing pollution,” said Grant Zimmerman, CEO at Amp Americas. “It is more important than ever to drive further adoption of clean and efficient domestic RNG within the trucking industry. There isn’t enough RNG being produced to meet customer demand. Our new project will help make strong headway toward closing the supply gap.” Amp Americas continues to expand its national footprint and to invest heavily in dairy RNG projects by partnering with dairy farmers across the country to bring more ultra-low CI gas to market. The company plans to more than double its dairy gas output by mid-2018, and aims to deliver Amp Renew, its 100 percent RNG product, to all 20 of its fueling stations as it brings on future projects.
May 30, 2017, U.S. - A pair of federal efforts could make it more profitable to turn organic waste from agriculture and other sources into energy by taking advantage of the Renewable Fuel Standard.One is a bill recently introduced in the U.S. Senate that would create a 30 percent investment tax credit for qualifying biogas and nutrient-recovery systems. That would put renewable compressed natural gas on a similar footing with solar and wind energy.A separate approach, currently before the Environmental Protection Agency, aims to create a pathway that would pay biogas producers for providing power for electric vehicles.An energy consultant from Des Moines is one of several people in the U.S. trying to devise a record-keeping system that ultimately would pay biogas producers much more than they now earn for generating electricity. READ MORE

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Composting Animal Mortalities Webinar
Wed Sep 26, 2018 @ 2:00pm - 03:00pm
World Dairy Expo 2018
Tue Oct 02, 2018 @ 8:00am - 05:00pm
Manure Pit Death: A preventable tragedy Webinar
Fri Oct 19, 2018 @ 2:30am - 03:30pm
2019 Dakota Farm Show
Thu Jan 03, 2019 @ 8:00am - 05:00pm
2019 Iowa Pork Congress
Wed Jan 23, 2019 @ 8:00am - 05:00pm
2019 Southern Farm Show
Wed Jan 30, 2019 @ 8:00am - 05:00pm

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.